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Abstract. There are several topics in fluid mechanics where the intermittency phenomenon appears, 
such as in Lorenz systems, Rayleigh-Bénard convection, DNLS equation and turbulence. The correct 
evaluation of the intermittency phenomenon contributes to a better prediction and a proper description 
of these topics. We summarized here a new method we have recently proposed to evaluate the 
reinjection probability function for type-II and type-III intermittencies. The new reinjection 
probability density (RPD) has been observed in the broad class of maps, as we have checked 
by both numerical simulations and analytical studies. For type-II and type-III intermittencies, 
we presented a new one-parameter family of functions describing the reinjection probability, 
being the usual type-II uniform reinjection probability a particular case of our RPD. For the 
type-III case, a new two-parameter family of RPD has been found from which one can derive 
the lower bound of reinjection (LBR). By extending the preceding analysis of type-II and 
type-III intermittencies, we give here a new RPD for the type-I case, from which we also 
derive the densities of the laminar phase lengths and the new characteristic relations.  
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1 INTRODUCTION  

Intermittency is a particular form of deterministic chaos, in which transition between 
laminar and chaotic phases occurs. A system is in regular behavior until, with a small change 
in a parameter, it begins to show chaotic burst at irregular intervals. Pomeau and Maneville 
introduced the intermittency concept in relation to the Lorenz system (Maneville and Pomeau, 
1979; Pomeau and Maneville, 1980; Maneville, 1980). In this work we pay attention to this 
phenomenon since it is well-known that it emerges in several topics in the frame of the fluid 
mechanics, such as Lorenz system, Rayleigh-Bénard convection; derivative non-lineal 
Schoendinger equation and turbulence, among others.  

The so-called intermittency phenomenon is classified into three types: I, II and III, 
according to the Floquet multipliers or eigenvalue in the local Poincaré map. For continuous-
time system, the type-I intermittency arises in a cyclic-fold bifurcation, for which a stable and 
an unstable orbits collapse, therefore, the system loses  the stable orbits in the vicinity of the 
vanished periodic orbits. For some maps, type-I intermittency occurs by means of an inverse 
tangent bifurcation, in this case an eigenvalue leaves the unit circle through +1. Intermittency 
type-II begins in a subcritical Hopf bifurcation, so that, two complex-conjugate Floquet 
multipliers or two complex-conjugate eigenvalues of the local Poincaré map exit in the unit 
circle. Intermittency of type-III is related to a subcritical period-doubling or flip bifurcation 
and one Floquet multiplier leaves the unit circle through -1.  

In some previous papers, we have presented a new methodology to evaluate the main 
defining properties for  type-II and type-III intermittencies, such as the reinjection probability 
density function (RPD), the probability density of the laminar phase,  the average laminar 
length and the characteristic relation (del Río and Elaskar, 2009 and 2010; del Río, et al., 
2010; Elaskar and del Río, 2009; Elaskar et al., 2010). In this work we extend this procedure 
to the type-I intermittency.  

The local Poincaré maps for type-I, II and III intermittencies are usually written as 
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for which  the intermittency phenomenon exists only for ε 0>  (Rusbend, 1990; Shuster and 
Just, 2005; Kim et al., 1997 and 1997a). 

It is clear that the reinjection probability density φ(x), accounting with the transition from 
chaotic burst into the laminar zone, depends on each particular system or map making φ to be 
governed by the chaotic behavior of the system itself. The local Poincaré map of the 
intermittency does not give the necessary information to determine the reinjection probability 
density (RPD). In general, it is very difficult to obtain φ(x) analytically and it is also very 
complicated to set experimentally or numerically, because the large number of data needed to 
cover each interval of length δx in the reinjection region due to the noise introduced in 
numerical evaluations or in experimental measurements. Because of this, different approaches 
have been used in the literature to study the intermittent systems. The most usual and simple 
approximation considers φ(x) as a uniform function, not depending on the reinjection point 
(Shuster and Just, 2005). Many other approximations have been used, for instance, in type-
Intermittency, Won and Kim (2000) assumed that the reinjection occurs in a fixed point Δ, 



 

which gives φ(x) = δ (x -Δ). We refer here another interesting case where it was considered 
( ) 1/x xφ ∝ − Δ  to study type-III intermittency in a electronic circuit (Won, et al. 2003). 

Due to the disparity observed in modeling φ, we can conclude that it is very important to 
provide a method to obtain a correct form for the RPD for each different map, because once 
the RPD function is properly stated, it can be possible to describe some other characteristic 
parameters for the intermittency phenomenon. In the next section we present the new method 
to derive the RPD function for types I, II and III intermittencies by using numerical data. This 
technique can be also extrapolated to use the experimental data for the same purpose. 

 

2 REINJECTION PROBABILITY DISTRIBUTION  

 In this paper, we do not directly measure the reinjection probability density φ(x) from the 
numerical data, instead of this, we numerically compute the function M(x), defined as 
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where xi  is the closed point to the unstable fixed point where the reinjection takes place,  i.e. 
it is the lower bound of the reinjection. The integration interval [xi , c] defines the laminar 
region. M(x) has been calculated for a broad class of maps numerically, and it has been stated 
that if exhibits  the linear  form  

 
                                                          M(x) = m x + xh                                                          (3) 

 
as a very good approximation. This form generalizes the function introduced by del Río and 
Elaskar (2009). From Eq.(2) it possible to determine that  M(xi) = xi, then, it  verifies 

 
                                                     ( )( ) = − +i iM x m x x x                                                      (4) 
 

where the slope  m plays an important role in the intermittency dynamics. Therefore, the 
function M(x) has been proved to be an useful tool to study type-II and type-III 
intermittencies. From Eq.(4) and Eq.(2) the reinjection probability density can be deduced, 
giving  
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where Λ is the normalization constant,  which  can be written as  
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with  k = 1 and k =0.5 for type-II and type-III intermittencies, respectively. Note that the slope 
m must satisfy the condition 0 < m < 1 which has been met in all our numerical tests. The 



 

usual uniform probability reinjection is recovered for m = 0.5 with xi = 0, leading to M(x) = 
0.5 x.  

 

3 INTEMITTENCY TYPE-I  

The new technique is now applied to study the type-I intermittency using the illustrating map 
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where xl  is such that 2 1l lx a xε + + = . For ε = 0 the origin is a fixed point, however, for ε >0  
all points x close to the origin move away in a process driven by  the parameters ε  and a.  
When the n-th iterated value xn approaches xl the reinjection mechanism starts, governed by 
exponent s. Figure 1 shows the map (7) for s = 0.5, 1 and 2 for the black, red and purple lines 
respectively, and Figure 2 shows the map time evolution of the laminar and chaotic behaviors 
with irregular lasting. Figure 3 depicts the bifurcation diagram to illustrate the instability at 
ε=0, for a = 1, s = 2.  
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Figure 1. Map (7) with ε = 0.000001 for s = 0.5 (in black), for s = 1 (red) and  s = 2 (purple).  
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Figure 2.  Eq.(7) map time evolution  for ε = 0.000001, a = 1, s = 2. 

 

 

Figure 3. Bifurcation diagram for Eq.(3). s = 2 and a = 1. 
 
 

3.1 Reinjection probability density function 

In this section we compute the RPD by using M(x) computed after having carried out 
several numerical tests. The results are presented in Fig. 4, where the three straight lines, 
crossing the origin, xi = 0 in Eq.(4),  correspond to the indicated values of s.  
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Figure 4. Function M(x). s = 0.75; 1 and  2; a = 1 and ε = 0.000001. 

 
After applying the least square method, we  have obtained the corresponding m values of  

the M  slope and each  exponent α appearing in Εq.(5), as follows   
 
s = 0.75,     m = 0.5686  α = 0.318 
s = 1.0,       0.4936 0.5m = ≈        - 0.02516 0 =α ≈  
s = 2.0,       m = 0.3104            α = -0.55 

 
In this kind of intermittency, k=1, the RPD normalization reads 
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which convergences for α > -1, giving for  Λ the expression 
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and the RPD  for type-I intermittency  is finally given by   
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only depending on  m. The comparison between the RPD obtained numerically with the 
analytical RPD calculated by means of Eq.(10) is depicted in Figures 5a, b and c, where, as in 
the remaining plots in this paper, dots stand for the numerical results and the solid lines 
correspond to analytical expressions. In these figures it can be checked out how the 
theoretical RDP properly assembles the numerical RPD for the three test cases, each one 
having a characteristic distinguishable non-linear (global) behavior, in particular,   the RPD is 



 

approximately constant in Fig 5b since α  is close to zero. 
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Figure 5a. The RPD as a function of x for s = 0.75, ε = 0.00001, c = 0.2. Dots stand for numerical results and the 
solid line plots the function given by Eq.(10)  
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     Figure 5b. The RPD for s = 1, ε = 0.00001, c = 0.2.  
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Figure 5c. The RPD for s = 2, , ε = 0.00001, c = 0.2.  

 

3.2 Probability of the laminar length 

Another important parameter for studying the intermittency phenomenon is the probability 
associated to the laminar length variable giving the probability of having a laminar length 
between l and l+dl.  Following the usual method based on interpretation transposing the map  
local difference equation into a continuous differential equation inside the laminar region 
(Shuster and Just, 2005), for type-I intermittency, Eq.(1), we have  
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where l counts the number of iterations in the laminar region. After integration of the Eq.(11) 
we have 
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which clearly evidences that the laminar iteration number (length of the laminar region) only 
depends on the local map but not on the global one. Finally, the probability of finding a 
laminar phase length inside the interval (l; l+dl) , φl(l), is  given by  
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where X(l,c) is the inverse of the l(x,c) (with respect to x) extracted from  Eq.(12) as  
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After substituting  Eq.(14) into Eq.(13) the required probability is  
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which for when 0l → , behaves as  
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This last equation indicates that for a very small ε, φl(0) is approximately constant and 
independent of ε,  

 
                                                          2(0)l a c +αφ ≈ Λ                                                         (17) 
 
For any positive α, the function φl(l) is a decreasing function of l , being  φl(l)=0 when l 

equals the value 

                                                       
arctan

m

ac
l

a

⎛ ⎞
⎜ ⎟

ε⎝ ⎠=
ε

                                                     (18) 

 
for α < 0, however, Eq.(18) determines the maximum laminar phase length and for l = lm the 
probability of the laminar length satisfies 
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meaning that for negative α values, the laminar length  l = lm  is a cut-off.  Having in mind the 
previous relations, we can conclude that there always exists a limit value lm for l, meanwhile 
the behavior of φl(l) depends on the sign of  α since for  0α ≤ , lim ( )

m
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l
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In general, the behavior of  φl(l)  is determined by Eq.(15) and see two relevant cases can 
be usefully distinguished.  For 0α ≠  two factors govern Eq.(15),  sec2(z) and tanα(z),  the 
former is always positive whereas tanα(0) = 0, furthermore, for z = 0,  a limit value l = lm, 
exists for α < 0 giving  lim ( )
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however in this case l = lm when z = π/2 
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which combined with Eq.(18) gives 

0
lim mlε→

→ ∞ .  

The figure Fig. 6 displays the characteristic behavior φl(l) for positive  α.  Here,  s = 0.6 
(α 0.665 ) for both numerical (dots)  and analytical results, with Eq.(15). By means of 
Eq.(17) we obtain (0) 0.16lφ  and  from Eq.(18) we have lm = 147.  In a similar way, in Fig. 
7 the typical φl(l) behavior  for negative α  is presented. An excellent agreement between 
numerical and Eq.(15, 17 and 18) analytical results has been found again in all tested cases. 

 

                 φl 

20 40 60 80 100 120 140

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 
                                                                                                                           l 

Figure 6. The probability of the laminar length for s = 0.6, ε = 0.0001, α 0.665− , c = 0.1. The solid line is 
obtained from Eq.(15). 

3.3 Characteristic relation 

The dependence of the average length of a laminar region on ε is denominated the 
characteristic relation. The average length L can be obtained as: 
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with the definition of the φ(x) in Eq.(10), we get: 
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Figure 7. The probability of the laminar length for s = 2, ε = 0,0001, α 0,555− , c = 0.2. 

                   
To solve the integral (21), we can decompose it into two parts (here a = 1 and xi = 0) 

 

                            
( )

( ) ( )
/( 1)

1 2 1 2

α α

0 0

Λ;
1 ε ε

arctan arctan
ε ε

m m

c c

m cL I I k I I k
m

c xL k x dx x dx

−

= − = − =
−

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦∫ ∫

                         (22) 

 
The solution of the first integral is directly given by  
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and  I2  can be integrated by parts with  
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If we replace the expressions for I1 and I2 in the L definition, we have: 
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now, taking εx y= ,  the integral I3 can be written as 
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The second integral goes to zero as ε goes to zero, the first integral converges if α is greater 
than -2 and less than 0, and the average laminar length is finale given by 
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In the previous calculation we have assumed α as independent of the very small parameter 

ε, as observed in the numerical experiments. In the Figure 8 it is shown the characteristic 
relation for  α = -0.376 (s = 1.5) and α = -0.555 (s = 2).  The numerical values (dots) are 
presented by the straight lines obtained by least square fitting. It can be checked that each line 
slope is in agreement with the value α/2 predicted by Eq.(28), as presented in following table 

 
 

s α/2 Slope in Figure 8 
1.5 -0.183 -0.178 
2 -0.27 -0.257 

Table 1. Comparison between numerical and theoretical slopes from Fig. 8 and Eq.(28) 
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Figure 8. Characteristic relation. Marks stand for numerical data and lines correspond to least square fitting. 

 
For the uniform reinjection as a particular case, α = 0, the integral I3 reads 
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and for small ε we have 
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providing, as expected, the classical form of the characteristic relation, Kim et al. (1994) and 
Cho et al. (2002), this behavior can be seen in Figure 9 obtained for s = 1 and α 0.03− . 

For the case of positive α ,  we have to numerically compute L by using Eq. (21). The 
results are presented in Figures 10 and 11, showing a good correspondence between the 
numerical and theoretical results. 
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Figure 9. Characteristic relation for α = 0. 

 

3.4 The Liapunov exponent 

For any map 1 ( )n nx f x+ = , the Liapunov exponent  λ(x), is defined as 
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where N is the number of  iterations. Eq. (31) indicates that eλ(x) is the average factor by 
which the distance between closely adjacent points becomes stretched after one iteration 
(Schuster and Just, 2005), λ

0(δ ) (δ ) N
Nx x e= . The relation 1/λ is called the Liapunov time and 

systems showing an exponential divergence, a positive λ, are referred as chaotic systems 
characterized by and an intrinsic scale defined by the Liapunov time. After a long time 
evolution with respect to the Liapunov time, these systems lose the initial state information 
(Prigogine, 2009).  
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Figure 10. Characteristic relation for s = 0.75, α = 0.328. Blue marks stand for numerical results and the red 

ones correspond to values obtained after numerical integration of Eq.(21). 
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Figure 11. Characteristic relation for s = 0.6, α = 0.665.  Blue marks stand for numerical results and the red ones 

correspond to values obtained after numerical integration of Eq.(21).  



 

It is interesting to note here that log(λ) is a linear  function of log(ε), as shown in Fig. 12 
for s = 1,5 and s=2, so that we can write σλ ε∝ . By least square method, we have checked 
that the relation σ α / 2≈ −  holds, however, this topic demands further investigations.  
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Figure 12. Liapunov exponent.  

3.5 Relation between α and s 

As shown in a previous paper (del Río and Elaskar, 2009) a relation exists between the 
coefficient α and the exponent s (s=q in that work)  
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which holds in our case for the map Eq.(7), as can be seen in Figure 13.  
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Figure 13. Relation between α and the exponent s. Marks stand for numerical results and the solid line 

corresponds to Eq.(32). 

4 LOGISTIC MAP  

Kim, et al. (1994) analyzed the following logistic map: 
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For the previous equations, type-I intermittency occurs for: 
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The intermittent phenomenon presents a lower bound of reinjection (LBR). The LBR is a 
function of A and can be negative, zero or positive. Kim et al. (1994) found that the 
reinjection probability density function possesses the form:  
 
                                                              ( ) 0.5( ) Lx x x −φ ∝ −                                                      (35) 
 
where xL is the LBR. We note that the Eq.(35) is a particular case of the Eq.(5) with α = -0.5 
or m = 1/3. 

We carried out several numerical tests, using Eqs.(2-4), to evaluate the function M(x) and the 
slope m. In all numerical tests we obtained that 1/ 3m ≅  independently of the LBR value. As 



 

examples we show in Figures 14 and 15 the RPD as function of the laminar interval, blue 
points represent the numerical evaluations and continuous lines indicate the theoretical 
predictions. Figure 14 corresponds to A = 0.94146194; Bc = 0.830195; xc = 0.563066; ε = 
0.0001 and the laminar interval is c = 0.01. Figure 15 exhibits the results for A = 0.9415; Bc = 
0.830205; xc = 0.56306; ε = 0.000001 and c = 0.02. From the two pictures we can observe a 
very good correspondence between the numerical dates and the theoretical values. 
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Figure 14. Reinjection probability function for logistic map given by Eq.(33). A = 0.94146194; Bc = 0.830195; 

xc = 0.563066; ε = 0.0001 and c = 0.01 
 

 
 
Eq.(33) and Eq.(7) define a very different functions, however both maps posses type-I 
intermittency and in both maps the intermittency phenomenon has the same exponential form 
for the reinjection probability density function. On the other hand, the function M(x) has 
shown to be an accurate tool to evaluate the reinjection probability density function. 
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Figure 15. Reinjection probability function for logistic map given by Eq.(33). A = 0.9415; Bc = 0.830205; xc = 
0.56306; ε = 0.000001 and c = 0.02. 

 

5 CONCLUSIONS 

In this paper we have extended to the type-I intermittency phenomenon the analysis 
procedure we developed in a previous work in studying type-II and type-III intermittencies. 
We have found that our function M(x) is also a key tool to analyze the type-I intermittency, 
especially when numerical or experimental data are required in the investigation, since it is 
easily obtained. Therefore, M(x) is more useful and simpler than the reinjection probability 
density φ which can be derived form the former. As a matter of fact, the reinjection 
probability density function, the probability of the laminar length, the average laminar length 
and the characteristic relation have been obtained for this case by means of numerical 
computations finding a good agreement with theoretical predictions.  In all numerical tests we 
have obtained that M(x) is linear, ( )M x m x= , and we have found  a power law for the RPD 
as φ(x) = λ xα which extended the usual uniform RPD, a particular case of ours for α = 0 or m 
= ½.  We have also verified that the relation between s and α, Εq.(32), deduced for a broad 
class of maps, properly holds for type-I intermittency.  
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