INSTITUTO UNIVERSITARIO AERONAUTICO

FACULTAD DE INGENIERIA

Av. Fuerza Aérea 6500 – X5010JMX – Ciudad de Córdoba

Córdoba - Argentina

Trabajo Final de Grado

Remotorización de Aeronave Piper Brave

Marzo de 2017. Córdoba, Argentina

Autores: - Bucci, Tomás M.

- Dirrheimer, Mauricio N.

Director: Ing. Carlos De Bortoli.

Agradecimientos

Agradecemos profundamente a nuestra familia, que a lo largo de estos años han sabido acompañarnos en todo momento, ayudandonos y dandonos todas las facilidades que a su alcance estuvieron para poder concretar esta etapa de obtener nuestro título profesional.

Indudablemente a nuestros compañeros y amigos, quienes han sido un pilar fundamental en el desarrollo diario a lo largo de la carrera. Hemos formado lazos de amistad que sin duda perduraran en el tiempo recordando por siempre tantas anécdotas que hemos vivido.

Al Ing. Carlos De Bortoli, por su desinteresado compromiso y ayuda en la realización de nuestro trabajo final, compartiendo con nosotros en todo momento sus conocimientos y experiencias para un favorable desarrollo.

A la Ing. Alejandra Rizzo, quien nos guío en todo momento durante la conformación de nuestro trabajo final, sin importar día u horario, siempre predispuesta a ayudarnos.

Un especial agradecimiento al Ing. Andrés Liberatto, quien incansablemente ha sabido estar a lo largo de todos estos años, ya sea brindando sus conocimientos, como evacuando dudas de toda indole. Sin duda, nuestro desarrollo academico no habría sido el mismo sin su aporte día a día.

Resumen

En el presente trabajo final de grado se estudio una alteración mayor que consta en la remotorización de una aeronave agrícola Piper Brave 375, tipo monomotor, tren convencional, de ala baja, en donde se reemplazo su planta de poder original que consistía en un motor alternativo de 8 cilindros por un sistema propulsivo del tipo turbo-hélice.

En Argentina, y por lo general, alrededor del mundo, la actividad agro-aérea conlleva un sacrificado desempeño tanto del material humano como del material de vuelo. Las aeronaves comunmente operan ininterrumpidamente durante toda la jornada laboral, llevando sus motores y estructuras al límite en sus parámetros operativos y consecuentemente, un elevado nivel de desgaste.

En la actualidad, la operación más eficiente en cuanto a motores se refiere, se refleja en la operación de motores turbo-hélices, los cuales reducen notablemente la cantidad de piezas móviles, por consiguiente, los niveles de desgaste. Son motores más eficientes en su operación, más seguros y con una relación peso-potencia mucho menor que los motores alternativos lo cual nos permite incremetar notablemente la potencia manteniendo las dimensiones prácticamente invariables.

Por ello y algunas otras cuestiones técnicas y operativas que se detallan a lo largo de este trabajo, es que decidimos realizar este análisis y justificar en forma analítica la mejora concreta de este proyecto.

Para ello, se diseño por completo una bancada motor con su correspondiente análisis estructural utilizando el software Ansys 15.0 paralelamente a la corroboración analítica estructural de calculos.

Posterior al diseño y análisis de bancada, se realizó una serie de cálculos sobre performance básicos de la aeronave, generando un punto comparativo entre aeronave estandar y aeronave alterada, para luego concluir sobre sus mejoras y los contras que la alteración involucra.

INDICE GENERAL

Agradecimientos	
Resumen5	
Capítulo 1 - Información Preliminar1	
1.1 - Búsqueda de soluciones similares en el mercado1	
1.2 - Obtención de los datos técnicos de la aeronave1	
1.3 - Obtención de los datos técnicos del motor2	
1.4 - Búsqueda de las normas que aplican al trabajo4	
1.5 - Lectura e interpretación de las normas4	
Capítulo 2 – Cargas según normas aplicables	
2.1 - Determinación de cargas actuantes6	
2.1.1 - Cargas límites de la envolvente de vuelo:6	
2.1.2 - Cargas límites debidas al torque motor6	
2.1.3 - Cargas laterales en la bancada motor7	
2.1.4 - Cargas giroscópicas y aerodinámicas7	
2.1.5 - Construcción de la envolvente de vuelo de la aeronave	
2.1.6 - Cargas debidas al torque motor8	
2.1.7 - Carga lateral en la bancada motor8	
2.1.8 - Cargas giroscópicas y aerodinámicas9	
2.1.9 - Resumen de todos los casos de cargas (carga última):10	
Capítulo 3 - Diseño estructural11	
3.1 - Balance y determinación de CG11	
3.2 - Propuesta de diseño de bancada18	
3.3 - Selección de material19	
3.4 - Corroboración de diseño aplicando cargas externas21	
3.4.1 - Dimensionamiento a la tracción23	
3.4.2 - Dimensionamiento a la compresión (pandeo)25	
3.4.3 - Diseño y corroboración de tomas bancada motor y bancada para-llama	
3.4.4 - Sub modelado conjunto unión bancada motor	
3.4.5 - Análisis de toma bancada motor (aluminio 7075-T6)41	
3.4.6 - Análisis de la unión bancada para-llamas45	
3.5 - Selección de elementos unión bancada – fuselaje47	
3.6 - Análisis de las uniones soldadas50	
Capitulo 4 - Análisis de vibraciones55	
4.1 – Estudio de espectro de vibraciones típico55	

	Domotorización Dinor Drovo	Russi Dirrheimer
informe Final	Remotorización Piper Brave	Bucci – Dirrneimer
4.2 – Estudio de las frecuencia	s naturales de la bancada	56
4.3 – Conclusión del estudio de	e vibraciones.	
Capitulo 5 - Análisis de fatiga		59
5.1 – Introducción teórica		59
5.2 – Corrección de tensión lím	nite de fatiga	60
5.3 – Generación de la curva d	e Goodman	62
5.4 – Determinación de cargas	actuantes	63
5.5 – Cálculo de Factores de S	eguridad	67
5.6 – Conclusión de estudio de	fatiga	68
Capítulo 6 - Estudio de Performa	nce	69
6.1 - Grupo motopropulsor		69
6.2 - Selección de hélice		70
6.3 – Resistencia aerodinámica	а	75
6.3.1 - Cálculo de Polar		76
6.3.2 - Aporte del Ala – Aviór	n estándar	77
6.3.3 - Aporte del Fuselaje –	Avión estandar	77
6.3.4 - Aporte sistema propu	lsivo – Avión estandar	77
6.3.5 - Aporte del Ala – Aviór	n modificado	
6.3.6 - Aporte del Fuselaje –	Avión modificado.	
6.3.7 - Aporte sistema propu	lsivo – Avión modificado	
6.4 - Distancias de despegue		79
6.4.1- Obtención de C _{Lmáx}		81
6.4.2 - Obtención de ΔC_L		82
6.4.3 - Obtención ∆C _{D flap}		84
6.5 - Autonomía		
Capítulo 7 - Costo y confección d	le diseño comercial	91
Conclusión		
Referencias		93
Anexos		94
A1 - Cargas en cada tubo:		94
A2 – Presupuesto comercial tra	abajo similar como refencia	
A3 – DataSheet de la aeronave	9	
A3 – DataSheet del motor PT6	-21	110
A4 – Datasheet Lycoming IO-7	20	

INDICE DE FIGURAS

Figura 1 - Tres vistas	2
Figura 2 - PT6A-21	3
Figura 3 - 2 vistas PT6A-21	4
Figura 4 – Envolvente de vuelo de la aeronave	8
Figura 7 - Envolvente de CG DataSheet	13
Figura 8 - Ubicación de CG avión original	14
Figura 9 - Ubicación del sistema motopropulsor original	14
Figura 10 – Ubicación del conjunto moto propulsor	15
Figura 11 - Envolvente de CG	17
Figura 12- Propuesta de bancada	18
Figura 13 - Propiedades mecánicas del acero 4130	19
Figura 14 - Propiedades mecánicas del aluminio 7075	20
Figura 15 - Convención de tubos de bancada	21
Figura 16 - Detalle de ubicación de carga y momento	22
Figura 17 - Convención de signos	24
Figura 20 - Detalle sujeción tubos suplementarios	29
Figura 22 - Pandeo mediante elementos finitos	31
Figura 23 - Nivel de tensión a carga última multiplicada por un factor de 1,9	32
Figura 24- Modelo detallado de bancada	33
Figura 25 - Zonas mas comprometidas	34
Figura 26 - Detalle bancada toma motor (detalle 1 figura 17)	35
Figura 27 - Detalle bancada toma superior izquierda para-llamas (detalle 2 figura 17)	35
Figura 28 - Toma lateral motor	36
Figura 29 – Sub-modelado toma motor izquierda	37
Figura 30 - Información de mallado	38
Figura 31 - Margen de seguridad de tubos vista numero 1 – carga última	39
Figura 32 - Margen de seguridad tubos vista numero 2 – carga última	39
Figura 33 - Detalle zona de singularidad	40
Figura 34 - Margen de seguridad toma motor vista numero 1	41

RSILAR	
Star Pla	
22	1
-1947-	1

Informe Final	Remotorización Piper Brave	Bucci – Dirrheimer
Figura 35 - Margen de segur	idad toma motor vista numero 2	41
Figura 36 - Análisis del gradi	ente de la toma	42
Figura 37 - Zona de tensión a	alta en el nervio	43
Figura 38 - Zonas de tensión	alta en bordes de elementos	44
Figura 39 - Sub-modelado to	ma bancada para-llamas	45
Figura 40 - información del m	nallado	46
Figura 41 - M.S. unión banca	ada para-Ilama	46
Figura 42 - Obtención del ma	argen de seguridad del bulón	48
Figura 43 - Margen de segur	idad del bulón mediante elementos finitos a	a carga última49
Figura 44 – Corte de Bulon		50
Figura 45 - Resistencia de ur	niones soldadas	50
Figura 46 - Refuerzo "finger	patch"	53
Figura 47 - M.S. soldadura c	on refuerzo "finger patch"	54
Figura 48 - Espectro de vibra	aciones típico	55
Figura 49 - Espectro de vibra	aciones del modelo	
Figura 50 - Diagrama de Wöl	hler acero 4130	59
Figura 51 - Tensión de tipo a	lternada	60
Figura 52 - Corrección por su	uperficie (factor de superficie)	61
Figura 53 - Diagrama de Goo	odman típico	62
Figura 54 - Diagrama de Goo	odman de la estructura	63
Figura 55 - Misión típica de f	umigación	63
Figura 56 - n vs t pasada cor	npleta	64
Figura 57 - Tipos de carga y	sus aplicaciones en perfil de misión básico	65
Figura 58 - Cargas de empuj	e y torque	65
Figura 59 - Cargas en pasad	a	66
Figura 60 - Ubicación de car	gas alternas y medias debajo de la línea de	e Goodman67
Figura 61 - PT6A – 21		69
Figura 62 - Hélice tri-pala de	velocidad constante	70
Figura 63 - Despeje de hélice	e segun norma	71
Figura 65 - Factor de Activida	ad vs CL pala – 80% de potencia	74
Figura 66 - Factor de Activida	ad vs CL pala – Crucero MPC	75
Figura 67 – Polar		76

Informe Final Remotorización Piper Brave Bucci – Dirrheimer

Figura 68 - Distancia de despegue	80
Figura 69 - Distancia de Despegue	86
Figura 70 - Distancia de despegue	87
Figura 71 - Tanques alares	88
Figura 72 - 3 vistas del Piper Brave	89
Figura 73 – Autonomía	90

ÍNDICE DE TABLAS

Tabla 1 - Características Generales	2
Tabla 2 - Datos técnicos motor	3
Tabla 3 - Lista de control de cumplimiento	5
Tabla 4 - Cargas debidas al torque motor	8
Tabla 5 - Cargas giroscópicas y aerodinámicas	9
Tabla 6 - Resumen de casos de carga	10
Tabla 7 - Momento generado desde centro de giro (borde de ataque)	12
Tabla 8 - CG avión original vacío	15
Tabla 9 - CG avión alterado vacío	16
Tabla 10 - Resumen de características mecánicas de material según tipo y espesor	20
Tabla 11 - Resumen de cargas - cargas críticas	22
Tabla 12 - Propiedades de la sección de los tubos	23
Tabla 13 - Resistencia del material seleccionado para los tubos	23
Tabla 14- Tensiones debido a carga última – caso de carga 4	24
Tabla 15 - Tensiones debido a carga límite – caso de carga 4	25
Tabla 16 - Tubos a compresión (análisis pandeo)	25
Tabla 17 - Características de la sección	26
Tabla 18 - Determinación de "c"	27
Tabla 19 - Determinación de "c"	27
Tabla 20 - Características de la columna	27
Tabla 21 - Cargas que soportan los tubos sin fallar (M.S) – carga última	28
Tabla 22- M.S. y cargas luego de modificación – carga última	29
Tabla 23- M.S. cargas combinadas – carga última	31
Tabla 24 - Tracción y corte en bulones	47

Informe Final	Remotorización Piper Brave	Bucci – Dirrheimer
Tabla 25 - Margen de seguridad ob	otenido de figura 25	49
Tabla 26 - Fsu de aceros		51
Tabla 27 - M.S. cordón soldadura		52
Tabla 28 - Frecuencias naturales d	irección X	56
Tabla 29 - Frecuencias naturales d	irección Y	57
Tabla 30 - Frecuencias naturales d	irección Z	57
Tabla 31 - Frecuencias naturales ro	otación eje X	57
Tabla 32 - Frecuencias naturales ro	otación eje Y	58
Tabla 33 - Frecuencias naturales ro	otación eje Z	58
Tabla 34 - Cargas medias y alterna	adas en cada caso de carga	66
Tabla 35 - Coeficientes de segurida	ad para vida infinita	68
Tabla 36 - Despegue y Ascenso		72
Tabla 37 - Crucero 80%		72
Tabla 38 - Máximo Contínuo		73
Tabla 39 - Factores de Actividad		73
Tabla 40 - Aumento de CI por flaps		82
Tabla 41 - Corrección CL y CL max	k en ala finita	83
Tabla 42 - Aumento de resistencia	por flaps	84
Tabla 43 - Costo comercial		91

Capítulo 1 - Información Preliminar

Los motores alternativos, si bien son comunmente utilizados en la aviación debido a su simpleza constructiva y facilidad de operación, son motores que poseen una alta cantidad de piezas móviles y se ven altamente afectados en cuanto al deterioro de su eficiencia operativa cuando los mismos son expuestos a condiciones climáticas adversas como lo pueden ser altas temperaturas o baja presión atmosférica. La evolución en el mundo aeronáutico, en cuanto a motores respecta, llega de mano de el motor tipo turbohélice, el cual disminuye notablemente la cantidad de piezas móviles y consecuentemente el desgaste propio por utilización del motor, traduciendose esto en mayor seguridad operativa y vida útil del mismo, como así tambien en la mejora de las relaciones peso-potencia de los mismo.

La actividad agro-aérea, generalmente reune requisitos adversos para la operación de la aeronave, refiriendose a ello en que la operación se realiza en condiciones de altas temperaturas ambiente, elevada carga paga que el avión debe transportar y excesivos tiempos de operación de la aeronave. Debido a estas características, es que resulta operativamente más eficiente, y más seguro, optar por aeronaves equipadas con motores del tipo turbo-hélices para realizar este tipo de actividades, y es allí en dónde se concentra el estudio.

1.1 - Búsqueda de soluciones similares en el mercado.

Al buscar soluciones comerciales similares, dentro del mercado de la aviación agrícola existe solo una empresa que realiza esta clase de alteración al Piper PA-36 en el mundo; el nombre de la empresa es Souther Field Aviation INC, está ubicada en la ciudad de Americus, en el estado de Giorgia, Estados Unidos.

Es una empresa pequeña, dedicada al mantenimiento de aeronaves como principal actividad, estando activa en el rubro aeronáutico desde 1976 y certificaron la alteración en el año 1992.

La propuesta de Souther Field Aviation es, recibir el avión que se pretende alterar en sus talleres, realizar el trabajo y luego volverlo al servicio; también, en caso de aviones en el exterior, venden la conversión y viajan al país para la instalación en algún taller habilitado por la autoridad correspondiente.

El costo total de la conversión es variable, ya que los motores ya son algo antiguos y difíciles de conseguir, este no es un dato menor ya que ha hecho que se reflexione sobre que planta motriz seleccionar a la hora de estudiar el diseño de la alteración, como aproximado y según el motor que se consiga, la empresa orienta a sus clientes con un coste de entre U\$S 180.000 y U\$S 200.000.

Para mayor información de la empresa se puede visitar su página de internet: http://www.southerfield.com/

1.2 - Obtención de los datos técnicos de la aeronave.

La aeronave Piper Pawnee Brave 375, se trata de un avión diseñado para aero-aplicación en el año 1972 como reemplazo del Piper Pawnee 235. Disponible con varias opciones de planta motriz, siendo los modelos más populares el Piper Pawnee Brave 300 (equipado con un Lycoming IO-540 de 300 HP), y el Piper Pawnee Brave 375 (con un Lycoming IO-720 que originalmente proveía 400 HP, pero que para el modelo está limitado a 375 HP).

A continuación se presenta una tabla con características y performances del Piper Brave 375 :

Características Generales		
Tripulantes Uno		
	1.08 [m ³] de capacidad en hopper	
Carga paga	1041 [Its] de líquido	
	998 [kg] de químicos secos	
Largo	27.5 [ft]	
Envergadura	38.13 [ft]	
Alto	Alto 7.5 [ft]	
Peso vacío 2465 [lb]		
	1 Avco Lycoming IO-720-D1C motor de 8	
Planta motriz	cilindros refrigerado por aire, de 375 [HP] de	
	potencia al eje	
Alcance (equipo de líquido)	410 [millas terrestres]	

Tabla 1 - Características Generales

Figura 1 - Tres vistas

Para más información técnica en el anexo del trabajo se adjunta un DataSheet provisto por la FAA americana.

1.3 - Obtención de los datos técnicos del motor.

El motor elegido para la conversión, luego de analizar la escaza disponibilidad del PT6-20 debido a su antiguedad, es el PT6-21 que no tiene mayor modificación más que la actualización de su diseño, lo que asegura que el antecedente de la alteración es comparable con lo que se desea lograr.

Se trata de un motor muy conocido y probado, cuenta con talleres de mantenimiento en todo el mundo y particularmente en Argentina existen varios con la capacidad de brindar mantenimiento a este tipo de motor.

La propuesta de este tipo de motor, nace de la gran fiabilidad que en su operación, desde su implementación, ha demostrado como así también de la mejora en la relación peso potencia, lo que garantiza una mejora muy favorable para el equipo donde se instale.

Figura 2 - PT6A-21

A modo de resumen se describen las características generales del motor, para mayor información, se adjunta su DataSheet en el anexo A3 del trabajo.

Potencia al eje (SHP) a 2200 RPM	550 [HP]
Peso (motor seco, con sistema de arranque pero sin sistema de gobernador de hélice ni escapes)	337 [Lb]
Consumo de combustible	330.7 $\left[\frac{Lb}{Hp x h}\right]$
Consumo de aceite	$0.2 \left[\frac{b}{h}\right]$
Tipo de combustible	Jet A-1
Largo	62 [in]
Alto	21 [in]
Ancho	21.5 [in]

Tabla 2 - Datos técnicos motor

Figura 3 - 2 vistas PT6A-21

1.4 - Búsqueda de las normas que aplican al trabajo.

Al leer el DataSheet de la aeronave, el mismo brinda como información la norma por la cual se diseñó la misma, y el año (cabe aclarar que las normas sufren modificaciones y revisiones a lo largo del tiempo, es muy importante seguir la norma correspondiente para tener coherencia en el diseño).

Se observa que las normas utilizadas para el diseño completo son las listadas a continuación:

- FAR 21 dated February 1, 1965, including Amendments 21-1 through 21-24 dated February 9, 1969
- FAR 23 dated August 1, 1967, including Amendments 23-1 through 23-6 dated August 1, 1967, with exception to FAR 23 per FAR 21.25(a)(1).

1.5 - Lectura e interpretación de las normas.

Analizando la normativa correspondiente, se observa que para el proceso de certificación de esta alteración deben revisarse todos los puntos a continuación citados de la FAR 23.

Por exceder el alcance de este trabajo final, se ha indicado que ítem de la normativa aplica a nuestro interés académico.

Punto de la normativa	Descripción	Aplica		
Airframe				
23.303	Factor of safety	Si		
23.333	Flight envelope	Si		
23.337	Limit maneuvering load factors	Si		
23.341	Gust loads factors	Si		
23.361	Engine torque	Si		
23.363	Side load on engine mount	Si		
23.371	Gyroscopic and aerodynamics loads	Si		
23.613	Material strength properties and design values	Si		
23.625	Fittings factors	Si		
23.629	Flutter	No		
	Power Plant			
23.903	Engines	No		
23.937	Turbopropeller-drag limiting system	No		
23.939	Power plant operating characteristics	No		
23.991	Fuel Pumps	No		
23.1019	Oil strainer or filter	No		
23.1045	Cooling test procedures for turbine engine powered airplanes	No		
23.1091	Air induction system	No		
23.1111	Turbine engine bleed air system	No		
23.1141	Power plant controls: general	No		
23.1155	Turbine engine reverse thrush and propeller pitch settings below the flight regime	No		
23.1521	Power plant limitations	No		
23.1557	Miscellaneous markings and placards	No		
System and equipment				
23.1301	Function and installation	No		
23.1303	Flight and navigation instrument	No		
23.1305	Power plant instruments	No		
23.1309	Equipment, system and installations	No		
23.1311	Electronic display instrument system	No		
23.1321	Arrangement and visibility	No		
23.1322	Warning, caution, and advisory lights	No		
23.1337	Power plant instruments installation	No		

 Tabla 3 - Lista de control de cumplimiento

Capítulo 2 – Cargas según normas aplicables

Para la determinación de cargas actuantes es necesario primero calcular las velocidades de diseño siguiendo la normativa vigente, las cuales se presentan a continuación:

Velocidad de pérdida (Vs) = 70 [KEAS] a nz = 1. Velocidad crucero de diseño (Vc) = 152 [KEAS]. Velocidad de picada de diseño (V_D) = 228 [KEAS].

2.1 - Determinación de cargas actuantes.

Según normativa, se debe tomar en consideración los siguientes factores de carga y factores de seguridad para el diseño:

2.1.1 - Cargas límites de la envolvente de vuelo:

a) Factor de carga límite de maniobra positivo no debe ser menos que n(+) = 4.4Para las categorías utility.

b) Factor de carga límite de maniobra negativo no debe ser menos n(-) = -0.4 * n(+) para las categorías normal, utilitario y conmuter.

c) Factor de carga límite por ráfaga positivo en Vc; en donde

 $n = 1 + \frac{K_g * U_{de} * V * a}{498 (W/S)}$, con $U_{de} = 50 [fps]$

d) Factor de carga límite por ráfaga negativo en Vc; en donde $n = 1 - \frac{K_{g*U_{de}*V*a}}{_{498}(W/_{s})}$, con $U_{de} = 50 \ [fps]$

e) Factor de carga límite por ráfaga positivo en V_D; en donde $n = 1 + \frac{K_{g^*Ude^*V^*a}}{498 (W/S)}$, con $U_{de} = 25 [fps]$

f) Factor de carga límite de maniobra por ráfaga negativo en V_D ; en donde

$$n = 1 - \frac{K_g * U_{de} * V * a}{498 (W/S)}$$
, con $U_{de} = 25 [fps]$

2.1.2 - Cargas límites debidas al torque motor.

a) El torque límite motor correspondiente a la potencia máxima de despegue, actuando simultáneamente con el 75% de las cargas límites de la condición de vuelo A de la sección 23.333(d).

b) El torque límite motor correspondiente a la potencia máxima continua, actuando simultá-neamente con las cargas límites de la condición de vuelo A de la sección 23.333(d).

c) Para turbohélices en adición a las condiciones especificadas en párrafo a) y b) de esta sección, un torque límite correspondiente a la potencia de despegue y velocidad de hélice, multiplicado por un factor que represente el mal funcionamiento del sistema del control de hélice, incluyendo un rápido embanderamiento (feathering), actuando simultáneamente con un factor de carga n(+) = 1. En ausencia de un análisis racional, un factor n(+) = 1.6 debe ser usado.

d) El torque límite del motor considerado en 1) debe ser obtenido mediante la multiplicación del torque nominal por un factor $\eta = 1.25$.

2.1.3 - Cargas laterales en la bancada motor.

a) Cada bancada motor y su estructura de soporte será diseñada para un factor de carga límite lateral no menor que 1,33, ó

2) Un tercio del factor de carga límite para la condición de vuelo A de la sección 23.333(d)

b) Esta carga lateral, descrita en el párrafo (a) de esta sección, se asume que actúa de manera independiente de otras condiciones de vuelo.

2.1.4 - Cargas giroscópicas y aerodinámicas.

a) Cada bancada motor y su estructura de soporte será diseñada para las cargas que resulten de los fenómenos giroscópicos, inerciales y aerodinámicos actuantes; debidos a él, o los motores y a la, o las hélices trabajando en la condición de RPM máxima continua; basándose en las siguientes:

- 1) Las condiciones prescritas en la sección 23.351 y sección 23.423; ó
- 2) Todas las posibles combinaciones de las siguientes:
 - i. Velocidad de guiñada de 2,5 radianes por segundo;
 - ii. Velocidad de cabeceo de 1 radian por segundo;
 - iii. Un factor de carga normal de 2,5; y
 - iv. El empuje máximo continuo.

2.1.5 - Construcción de la envolvente de vuelo de la aeronave.

La primera serie particular de casos de carga a evaluar son las presentadas en la envolvente de vuelo. La envolvente de vuelo se construye con diversos datos de la aeronave, como ser el peso máximo de despegue, la superficie alar, la pendiente de sustentación de la aeronave, etc.

Se presentan a continuación datos generales de la aeronave

Peso máximo de despegue (MTOW) = 4800 [lbs]. Superficie alar = 225.6 [ft²] Perfil alar = NACA 63_3618 . Cuerda media geométrica (c) = 5.75 [ft]. Pendiente de la curva del coeficiente de fuerza normal del avión (a) = 6.70 1/rad. Velocidad de pérdida (Vs) = 70 [KEAS] a nz = 1. Velocidad crucero de diseño (Vc) = 152 [KEAS]. Velocidad de picada de diseño (V_D) = 228 [KEAS]. Velocidad de maniobra de diseño (V_A) = 147 [KEAS]

Con los datos presentados anteriormente y los métodos prescritos en la norma, se obtiene la siguiente envolvente de vuelo:

Figura 4 – Envolvente de vuelo de la aeronave

2.1.6 - Cargas debidas al torque motor

Torque (takeoff power) a 2200 RPM (Tto) = -1642 [Lb-ft] Torque (maximum continuous RPM) a 2200 RPM (Tmc) = -1642 [Lb-ft] Peso nominal conjunto soportado por bancada (Wc) = 522 [lb] Peso último conjunto (wu) = 522x1,725 = 900,45 [lb]

Detalle	Fz [Lb]	Mx [Lb-ft]
T _{to} + 0.75 x nz _{max} x Fz (condición A)	-2972.5	-1642
T _{mc} + Fz (condición A)	-3963.3	-1642
T _{to} x 1,6	-900.7	-2109

Tabla 4 - Cargas debidas al torque motor

Nota: los valores presentados corresponden a carga última (J = 1,725)

2.1.7 - Carga lateral en la bancada motor

La carga lateral a ser evaluada es producto de la masa del conjunto motor-hélice sujeta a una aceleración en sentido lateral.

Carga lateral (F_y) teniendo en cuenta un factor de carga lateral ny = 1,46;

 $F_v = W_c \times J \times 1,46 = 522 \times 1,725 \times 1,46$ [lb] = 1314,65 [lb]

Nota: los valores presentados corresponden a carga última (J = 1,725)

2.1.8 - Cargas giroscópicas y aerodinámicas

Empuje máximo continuo nominal (T_n) , $T_n = 2756$ [lb] Empuje máximo continuo último (T), T = 4755.52 [lb] Velocidad angular de guiñada (r) r = 2.5 rad/segVelocidad angular de cabeceo (q) q = 1Factor de carga normal (nz) nz = 2.5 [-]

De las combinaciones totales posibles de las variables presentadas se obtiene el listado de casos de carga detallado en el Cuadro 5.4.

Nota: Se entiende que cuando no se contempla nz=2,5, debería contemplarse nz=1, teniendo en cuenta en la carga Fz la fuerza que ejerce el conjunto en la dirección z (peso).

Tipo de carga	My [Lb-ft]	Mz [Lb-ft]	Fx[Lb]	Fz [Lb]
r	1600.03	-	1285.48	-900.76
q	-	640.01	205.70	-900.76
Т	-	-	4755.73	-900.76
nz	-	-	-	-2251.91
r + q	1600.03	640.01	1491.18	-900.76
r + T	1600.03	-	6041.21	-900.76
r + nz	1600.03	-	1285.48	-2251.91
q + T	-	640.01	4961.43	-900.76
q + nz	-	640.01	205.70	-2251.91
T + nz	-	-	4755.73	-2251.91
r + q + T	1600.03	640.0	6246.91	-900.76
r + q + nz	1600.03	640.01	-	-2251.91
r + T + nz	1600.03	-	6041.21	-2251.91
q + T + nz	-	640.01	4961.43	-2251.91
r + q + T + nz	1600.03	640.01	6246.91	-2251.91

Tabla 5 - Cargas giroscópicas y aerodinámicas

Nota: los valores presentados corresponden a carga última (J = 1,725)

2.1.9 - Resumen de todos los casos de cargas (carga última):

сс	Tipo de carga	Mx [Lb-ft]	My [Lb-ft]	Mz [Lb-ft]	Fx [Lb]	Fy [Lb]	Fz [Lb]
1	Envolvente	-	-	-	-	-	-3962.68
2	Envolvente	-	-	-	-	-	1585.34
3	Torque motor	-1641.99	-	-	-	-	-2972.52
4	Torque motor	-1641.99	-	-	-	-	-3963.31
5	Torque motor	-2108.83	-	-	-	-	-900.76
6	Carga lateral	-	-	-	-	1315.07	
7	Carga giroscópica	-	1600.03		1285.48	-	-900.76
8	Carga giroscópica	-	-	640.01	205.70	-	-900.76
9	Carga giroscópica	-	-	-	4755.72	-	-900.76
10	Carga giroscópica	-	-	-	-	-	-2251.91
11	Carga giroscópica	-	1600.03	640.01	1491.18	-	-900.76
12	Carga giroscópica	-	1600.03	-	6041.20	-	-900.76
13	Carga giroscópica	-	1600.03	-	1285.48	-	-2251.91
14	Carga giroscópica	-	-	640.01	4961.4	-	-900.76
15	Carga giroscópica	-	-	640.01	205.70	-	-2251.91
16	Carga giroscópica	-	-	-	4755.72	-	-2251.91
17	Carga giroscópica	-	1600.03	640.012	6246.91	-	-900.76
18	Carga giroscópica	-	1600.03	640.012	-	-	-2251.91
19	Carga giroscópica	-	1600.03	-	6041.20	-	-2251.91
20	Carga giroscópica	-	-	640.012	4961.42	-	-2251.91
21	Carga giroscópica	-	1600.03	640.012	6246.91	-	-2251.91

Tabla 6 -	Resumen	de casos	de carga
-----------	---------	----------	----------

Capítulo 3 - Diseño estructural

3.1 - Balance y determinación de CG.

Ante la propuesta de bancada, un interrogante es determinar el largo desde el plano de sujeción del motor, al datum del avión para no salirse de la envolvente de CG correspondiente al avión original.

Para lograr esto, se calculó el momento generado por la instalación original y se respetó el mismo para la nueva motorización, considerando que el peso del motor, hélice, capots y accesorios es de 522 lbs, para mantener el mismo momento desde el para-llamas, el largo de bancada debe ser de 985 mm, o en unidades inglesas 38.78 pulgadas, este cálculo se realizó teniendo en cuenta el mayor nivel de detalle posible, pero sabiendo que al momento de la construcción se debe de realizar el correspondiente peso y balanceo para asegurar que el CG se encuentre dentro de la envolvente, con este largo de bancada, la estación donde queda ubicado el CG del motor, hélice y capots es a 52.66 pulgadas del datum, se muestra a continuación un gráfico, buscando aclarar mas aún éste tema, tomando como centro de momento el borde de ataque del avión (estación 126):

Figura 5 - Momento generado avión original

Se debe evaluar seguidamente la ubicación del CG del conjunto motor, capot, etc, desde el mismo centro de giro (borde de ataque), y hacer el cálculo de momento generado. En el siguiente gráfico se muestran estas consideraciones:

Figura 6 - Momento generado conjunto propulsor, avión modificado desde borde de ataque

Con estos datos, en la siguiente tabla se muestran los momentos generados en ambas configuraciones:

	Distancia de CG respecto borde de ataque [in]	Peso del conjunto motor [Lb]	Momento generado [Lb-in]	Diferencia momento [Lb-in]
Avión original	58.09	658.5	38252.27	16 00
Avión alterado	73.37	522	38299.14	-40.88

Tabla 7 - Momento generado desde centro de giro (borde de ataque)

A pesar de que existe una diferencia, es un primer loop de cálculo y se debe tener en cuenta que pueden faltar elementos a tener en cuenta en un diseño preliminar, se recalca que al momento de instalar se debe hacer un peso y balance para asegurarse que los límites de la envolvente de CG se respeten.

Se muestra a continuación la envolvente de CG presentada por la FAA en el datasheet correspondiente a la aeronave:

A pesar de haber realizado el cálculo de momento generado desde un centro de giro, se muestran a continuación todos los cálculos de CG del avión completo para corroborar que el centro de gravedad no salga fuera de los límites de la envolvente de CG.

Se debe a continuación realizar un cálculo del momento que genera el conjunto propulsor con respecto al DATUM, esto se puede entender mejor observando la siguiente figura:

Figura 9 - Ubicación del sistema motopropulsor original

Con los	datos de la	distancia a	I DATUM y	el peso de	el conjunto	se realiza	a el cálculo	de CG	en la	siguiente
tabla:										

	Lista de equimamientos y pesos.								
	Descripción	Descripción Peso [Lb] Est							
	Hélice	78.5	45.1	3540.35					
	Motor	580	71	41180					
Avión	Combustible	18	138.4	2491.2					
vacío.	Hooper	0	134.4	0					
	Piloto	0	196	0					
	Resto del avión	1788.5	172.5	308516.25					
	Totales	2465		355727.8					
		CG		144					

Tabla 8 - CG avión original vacío

Se realiza el mismo procedimiento esta vez con los datos que se tienen del avión alterado:

Figura 10 – Ubicación del conjunto moto propulsor

Remotorización Piper Brave

	Lista de equipamientos y pesos.									
	Descripción	Peso [lb]	Estación [in]	ΣM [lb.in]						
Avión	Conjunto motor	522	52.66	27488.52						
alterado	Tolva	0	134.4	0						
vacío.	Combustible	18	138.4	2491.2						
	Piloto	0	196	0						
	Resto del avión	1693.5	172.5	292128.75						
	Totales	2233.5		322108.47						
CG 144.21										
	Table 0 CC at	باغبر والإمريج								

Tabla 9 - CG avión alterado vacío

Se corrobora de ésta manera que la alteración en la aeronave modifica levemente el peso del avión y el centro de gravedad se mantiene dentro de los límites de la envolvente de CG, en valores muy cercanos al avión sin alteración. Al mantener estos parámetros, el diagrama V-N se mantiene original, por lo que no hay que hacer mayores estudios ni consideraciones.

Figura 11 - Envolvente de CG

Se plasman en la figura anterior las dos configuraciones de peso posible para así demostrar que bajo ninguna circunstancia el avión sale de la envolvente de CG original.

Se observa que el peso vacío del avión disminuye debido a la conversión, esto se traduce en más carga en el Hopper al momento de operar, en condiciones iguales (mismo peso de combustible y de piloto), el avión puede sin salirse de su envolvente de CG, cargar unas 231.5 lb más, aproximadamente unos 105 kg.

3.2 - Propuesta de diseño de bancada.

Una vez definidas las cargas actuantes en el modelo, se debe realizar una propuesta de diseño, referida a la geometría general de la bancada, para luego de la determinación de las cargas en cada tubo, continuar con el dimensionamiento de los tubos. Además, en este punto se define los requisitos de diseño de la bancada, los mismos se vuelcan en la siguiente lista.

Requisitos de diseño:

- Ningún elemento de la bancada debe superar la tensión de fluencia a carga límite.
- Ningún elemento de la bancada debe superar la tensión de rotura a carga última.
- La bancada debe ser diseñada bajo el concepto de diseño de "vida infinita".
- Ningún elemento debe pandear (ya sea falla local o como columna), a carga última.

A continuación se muestra un modelo de bancada para visualizar la geometría general de la misma, y la conversión que se utiliza para cada tubo:

Figura 12- Propuesta de bancada

3.3 - Selección de material.

El material más utilizado en bancadas y estructuras tubulares en general en aviación, y particularmente en el Piper Brave es el AISI 4130, por lo tanto se decide unificar el material de bancada y fuselaje del avión eligiendo el mismo material.

Para las tomas motor-bancada, estudiadas en detalle más adelante, se selecciona un aluminio aeronáutico 7075-T6, debido a su tenacidad y posibilidades de maquinación, para de esta manera, optimizar una pieza que cumpla de la mejor forma posible las exigencias, y contando con las nuevas tecnologías constructivas ser llevada a cabo, inclusive dentro del país.

Las propiedades de ambos materiales se vuelcan a continuación:

Alloy	AISI 4	4130	AISI	4135	AISI 8630			
Specification [see Tables 2.3.1.0(a) and (b)]	AMS AMS AMS MIL-T MIL-S-	6360 6373 6374 -6736 18729	AMS MIL-7	6365 F-6735	MIL-S-18728			
Form	Sheet, stri and tu	ip, plate, bing	Tul	bing	Sheet, strip, and plate			
Condition		Norma	lized and ter	npered, stress	relieved*			
Thickness or diameter, in	≤ 0.187	>0.187	≤ 0.187	≤ 0.187	≤ 0.187	≤ 0.187		
Basis	s	s	s	s	s	s		
Mechanical Properties:								
F ksi	95	90	100	95	95	90		
F ₆₀ ksi	75	70	85	80	75	70		
F.,, ksi	75	70	89	84	75	70		
F ", ksi	57	54	60	57	57	54		
F _{bru} , ksi:								
(e/D = 1.5)								
(e/D = 2.0)	200	190	190	180	200	190		
F _{byo} ksi:								
(e/D = 1.5)								
(e/D = 2.0)	129	120	146	137	129	120		
ø, percent			See Tab	le 2.3.1.0(d)				
<i>E</i> , 10 ³ ksi			2	29.0				
<i>E</i> _c , 10 ³ ksi	29.0							
G, 10 ³ ksi	11.0							
μ				0.32				
Physical Properties:								
ω, lb/in. ³			0	.283				
C. K. and a			See Fig	nure 2.3.1.0				

Figura 13 - Propiedades mecánicas del acero 4130

Specification		AMS 4045 and AMS-QQ-A-250/12																			
Form		Sheet							Plate												
Temper	T6 and T62 ^a						T651														
Thickness, in.	0.008- 0.011	0.0 0.0	12- 39	0.0 0.1	40- 25	0.1 0.2	26- 49	0.2 0.4	50- 99	0.5 1.0	00- 00	1.0 2.0	01- 00	2.0 2.1	001- 500	2.5 3.0	01- 00	3.0 3.5	01- 00	3.50 4.0	01- 00
Basis	S	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
Mechanical Properties: F _h , ksi: L LT 		76 76	78 78	78 78	80 80	78 78	80 80	77 78	79 80	77 78	79 80	76 77	78 79	75 76	77 78	71 72	73 74	70 71	72 73	66 67	68 69
ST F ₀ , ksi: L LT ST	63	69 67	 72 70	 70 68	 72 70	 71 69	 73 71	69 67	71 69	70 68	 72 70	69 67	71 69	70° 66 64 50 ^b	68 66 61 ^b	66° 63 61 56°	68° 65 63 58°	60 58 54 ^b	67° 62 60	56 54 50 ⁶	63° 58 56 52°
F _{or} ksi: L LT ST F _m ksi		68 71 46	71 74 47	69 72 47	71 74 48	70 73 47	72 75 48	67 71 43	69 73 44	68 72 44	70 74 45	66 71 44	68 73 45	62 68 67 44	64 70 70 45	58 65 64 42	60 67 66 43	55 61 61 42	57 64 63 43	51 57 57 39	52 59 59 41
F_{bru}^{c} , ks1: (e/D = 1.5) (e/D = 2.0) F_{brv}^{c} , ks1:		118 152	121 156	121 156	124 160	121 156	124 160	117 145	120 148	117 145	120 148	116 143	119 147	114 141	117 145	108 134	111 137	107 132	110 135	101 124	104 128
(e/D = 1.5) (e/D = 2.0) e, percent (S-basis):		100 117	105 122	102 119	105 122	103 121	106 124	97 114	100 118	100 117	103 120	100 117	103 120	98 113	101 117	94 109	97 112	89 104	93 108	84 98	87 103
	5 7 8 8 10.3 10.5 3.9 0.33						9		7		6)	 10.3 10.6 3.9 0.33))		3		
Physical Properties: ω , lb/in. ³ C, K , and α		0.101 See Figure 3.7.4.0																			

Figura 14 - Propiedades mecánicas del aluminio 7075

Se resumen a continuación las propiedades utilizadas según cada material:

Material	E [ksi]	Fty [ksi]	Ftu [ksi]
AISI 4130	29000	75	95
AL 7075-T6	10300	69	77

Tabla 10 - Resumen de características mecánicas de material según tipo y espesor

De la figura 13, se obtienen los datos representados en la tabla 10. En el caso del AISI 4130 por su espesor, en este caso menor a 0,187", obtenemos E, Fty y Ftu.

Por otro lado, para el alumino 7075-T6 se muestran, en la figura 14, dos valores de carga última Ftu y de carga de fluencia Fty (A y B) los cuales se distinguen según la cantidad estadística de ensayos que superan el valor promedio según corresponda. El valor A es alcanzado el 99% de los ensayos y el valor B el 95% de los ensayos.

Por lo citado anteriormente, se utilizan los valores más conservativos (A).

3.4 - Corroboración de diseño aplicando cargas externas.

A partir de los valores de carga, se analizó cada uno de los tubos siguiendo la siguiente convención:

Figura 15 - Convención de tubos de bancada

Se consideró el motor como rígido indeformable, lo que le quita a los puntos de anclaje movimientos relativos entre sí en su plano, además en los soportes de sujeción bancada-parallamas, se considera el sólido sin ningún grado de libertad.

A continuación se detalla el punto donde se aplica la carga y el momento, junto con una tabla de coordenadas y valores.

Figura 16 - Detalle de ubicación de carga y momento.

Para el dimensionamiento de los tubos de bancada, se analiza el diámetro y el espesor del tubo siguiendo las medidas comerciales, primeramente a la tracción para luego continuar con un análisis de pandeo.

Para esto se analiza la estructura con el caso de cargas más crítico el cual corresponde al cuarto caso de carga, mencionado en el punto 2.1.9. Esto resulta así, de ejecutar en la estructura cada uno de los casos de carga y observar las solicitaciones de los tubos, buscando dónde existe la más crítica o mayor.

El caso 21, muestra el mayor momento torsor, pero el valor obtenido es despreciable para en alálisis.

Tipo de carga	Valor	Caso de carga	Tubo
Máxima tracción [Lb]	4535.52	4	2
Máxima compresión [Lb]	-5260.53	4	1
Máximo flector [Lb-ft]	84.20	4	7
Máximo torsor [Lb-ft]	21.32	21	7

Tabla 11 - Resumen de cargas - cargas críticas

3.4.1 - Dimensionamiento a la tracción.

Se propone como tubo comercial general para corroborar las cargas un tubo de AISI 4130 de 5/8 [in] con un espesor de 0.058 [in], con esas dimensiones las propiedades de sección son las siguientes:

De [in]	T [in]
3/4	0.058
Re [in]	Ri [in]
0.375	0.317
I [in ⁴]	A[in ²]
0.00760	0.126

Tabla 12 - Propiedades de la sección de los tubos

Donde:

- D_e : Diámetro exterior.
- T : Espesor.
- R_e: Radio exterior.
- R_i : Radio interior.
- I: Inercia.
- A : Área.

Las propiedades del material elegido son las siguientes:

σ _{tu} AISI 4130 [ksi]	σ _{ty} AISI 4130 [ksi]
95	75
Tabla 13 - Resistencia del material seleccionado para los tubos	

Luego, la corroboración del tubo elegido se realiza siguiendo la siguiente fórmula:

$$\sigma = \frac{P}{A} - \left(\frac{Mz \times Iy - My \times Iyz}{Iy \times Iz - Iyz^2}\right) \times y + \left(\frac{My \times Iz + Mz \times Iyz}{Iy \times Iz - Iyz^2}\right) \times z - \propto \times \Delta T$$

Con la siguiente convención de signos:

Figura 17 - Convención de signos

La fórmula utilizada, aplicada para un tubo con las propiedades de sección definidas anteriormente, queda definida de la siguiente forma:

$$\sigma = \frac{P}{A} + \frac{My}{Iy} \times z$$

Donde:

- σ : Tensión actuante.
- P: Carga aplicada.
- A : Área de la sección.
- My : Momento en el eje y.
- ly : Inercia respecto al eje y.
- z : Distancia de la fibra con respecto al eje de refencia elegido

Al definir las fórmulas, las propiedades de la sección y el material, se procede a analizar cada tubo del caso de carga más crítico para cada uno de los tubos de la bancada, para de esta forma descartar la falla en los demás casos de carga.

Se obtienen los siguientes resultados a carga última:

Tubo	Carga máxima (P) [Lb]	Momento flector [Lb-ft]	σ[Ksi]	Cumple con requisito	M.S.
1	-5260.53	14.28	-33.29	Verificar pandeo	Verificar pandeo
2	4535.52	4.90	38.90	SI	1.44
3	717.01	18.41	16.60	SI	4.72
4	1703.76	16.98	23.58	SI	3.03
5	2238.92	8.83	23.00	SI	3.13
6	-3167.56	19.66	-13.49	Verificar pandeo	Verificar pandeo
7	-191.25	84.20	48.37	SI	0.96

Tabla 14- Tensiones debido a carga última – caso de carga 4

Se puede verificar que ningún tubo falla a carga última cumpliendo el requisito del diseño de bancada, es decir, la bancada no superará la tensión de rotura a carga última.

Se debe verificar también, que a carga límite no se supere el límite de fluencia, dicha verificación se muestra en la siguiente tabla:

Tubo	Carga máxima (P) [Lb]	Momento flector [Lb-Ft]	σ[Ksi]	Cumple con requisito	M.S.
1	-3462.28	7.36	-19.02	Verificar pandeo	Verificar pandeo
2	3082.13	3.50	26.54	SI	1.83
3	221.35	10.96	8.25	SI	8.09
4	1182.20	9.56	15.05	SI	3.98
5	845.71	6.28	10.43	SI	6.19
6	-1424.21	12.55	-3.87	Verificar pandeo	Verificar pandeo
7	-120.62	55.98	32.21	SI	1.33

Tabla 15 - Tensiones debido a carga límite – caso de carga 4

Se observa que no solamente se cumple con los requisitos de diseño, sino que además los márgenes de seguridad son muy superiores a 0, esto asegura que la bancada no fallará bajo el caso de carga más crítico y por supuesto, tampoco lo hará con los demás casos de carga.

Debido a que los margenes de seguridad son altos, se concluye que el conjunto tiene un excedente de material, el cual puede ser optimizado llevando estos márgenes a valores más eficientes y disminuir su peso total. Esto no se realizó, ya que se observa que el peso final de la pieza analizada en el conjunto de la planta motríz, es aún menor que en la aeronave original, concluyendo que el peso excedente es despreciable.

3.4.2 - Dimensionamiento a la compresión (pandeo).

Se debe comprobar que los tubos sometidos a compresión, flexión y torsión, no sufran pandeo aplicando la carga última, para esto primeramente se detallan los tubos que sufren compresión, y se definen las demás cargas aplicadas en los mismos, los valores corresponden al caso de carga 4, el cual es el más crítico:

Tubo	Carga máx (P) [lb]	Momento flector (M _f) [Lb-Ft]	Momento Torsor (M _t) [Lb-Ft]	
1	-5260.32	14.28	3.19	
6	-3167.43	19.66	-2.96	
		17 7 71 1	1 1	

Tabla 16 - Tubos a compresión (análisis pandeo)

Para un primer análisis, se calculará el margen de seguridad teniendo en cuenta solo las cargas de compresión, ya que el momento flector en ambos tubos es relativamente pequeño y el momento torsor es despreciable, si los márgenes de seguridad son positivos, se analizará la respuesta del tubo teniendo en

cuenta las cargas combinadas (carga axial y momento flector). Se muestra a continuación las características de sección y de columna de los tubos a analizar:

Características de la sección:

De [in]	T [in]	ρ[in]	I [in⁴]	A [in ²]		
3/4	0.058	0.245	0.0076	0.126		
Tabla 17 - Características de la sección						

Donde:

ρ: radio de giro.

Luego, se debe calcular el coeficiente "c" que determina el grado de rigidez del extremo de la columna, al ser ambos extremos con tubos soldados, se debe realizar un cálculo teniendo en cuenta las propiedades de los tubos que convergen en cada nodo extremo del tubo a analizar.

Para este cálculo, se utiliza el gráfico de la referencia 1 como se muestra a continuación:

Figura 18 - Constante de resorte de torsión (c)

Utilizando los siguientes datos del tubo y del material:

Determinación de c						
E[psi]	4EI/L [lb-pulg/rad]					
29.000.000	5	42.84	20580.37			
29.000.000	7	17.49	50400.20			
	Sumatoria	70980.56				

Tabla 18 - Determinación de "c"

Donde:

E: Módulo de elasticidad del material.

L: Largo del elemento.

I: Inercia.

Y utilizando la fórmula:

$$\sum \frac{4EI}{L} = \mu = 70980.56$$

Se determina:

μL/El	c (determinado por figura)		
12.57	1.8		
Tabla 19 - Determinación de "c"			

Características de la columna:

Tubo	L[in] c		L'/p		
1	39.045	1.8	118.53		
6	39.045	1.8	118.53		
Tabla 20 - Características de la columna					

NOTA: se trabaja en esta sección con unidades inglesas ya que los libros y tablas utilizan este sistema, y resulta más práctico para trabajar directamente, en lugar de tener que hacer conversión de unidades.

Calculado el coeficiente de rigidez del extremo del tubo, se analiza finalmente la carga que puede soportar el tubo sin pandear, siguiendo la fórmula:

$$P_c = \frac{c * \pi^2 * E * I}{L^2}$$

Tubo	Carga aplicada (P) [lb]	Pc [lb]	MS [-]
1	-5260.32	2569 55	-0.51
6	-3167.43	-2000.00	-0.19

Tabla 21 - Cargas que soportan los tubos sin fallar (M.S) – carga última

Donde:

- Pc : Carga límite de pandeo.
- P : Carga aplicada.
- E : Módulo de elasticidad del material.
- I : Inercia de la sección.
- L : Largo del elemento.
- MS : Margen de seguridad

Como se observa, los tubos 1 y 6 sufren pandeo como columna tan solo analizando la carga de compresión a la que están sometidos, se debe buscar una solución a este problema, se decide agregar tubos a la mitad del largo de la columna, sujetados con abrazaderas para así evitar los problemas de la soldadura. Se detallará el cambio de diseño general con un gráfico a continuación:

Figura 19 - Modificación de estructura de bancada

El modelo mostrado es un modelo simplificado, los detalles de la sujeción de los tubos son mostrados a continuación:

Figura 20 - Detalle sujeción tubos suplementarios

Al contar con los tubos de refuerzo, se rehízo el cálculo del pandeo de los tubos 1 y 6, esta vez, teniendo en cuenta un c=4 (éste valor es según referencia 1, cuando tenemos una sujeción a la mitad de la longitud), de esta manera, recalculando los valores de los M.S., se obtiene:

Tubo	Carga aplicada (P) [lb]	Pc [lb]	MS [-]
1	-5260.32	5707 90	0.09
6	-3167.43	-5707.89	0.80

Tabla 22- M.S. y cargas luego de modificación – carga última

Se verifica que los márgenes de seguridad son positivos, teniendo en cuenta la carga axial de compresión únicamente, de manera tal que se debe hacer la corroboración con cargas combinadas de compresión y momento flector.

Para ello se recurre a las fórmulas propuestas por el Bruhn siguientes:

$$Fb = M * \frac{I}{y} \rightarrow M = Fb * \frac{y}{I}$$
$$Rb = \frac{M}{M_{max}}, Rc = \frac{P}{Pc}$$
$$M.S. = \frac{1}{Rb + Rc} - 1$$

Donde:

Fb : Tensión aplicada en el elemento.Rb : Relación entre momento aplicado y momento máximo.Rc : Relación entre carga aplicada y carga máxima.M.S. : Margén de seguridad.

Y al siguiente gráfico:

Se obtienen los siguientes resultados:

fb [psi]	Momento flector max [lb-in]	Momento flector max [lb-ft]		
125000	2533.52	211.12		
Tubo	Momento flector [Lb-ft]	Rb	Rc	M.S. (esfuerzo combinado)
1	14.28	0.07	0.92	0.01
6	19.66	0.09	0.55	0.54

Tabla 23- M.S. cargas combinadas – carga última

Se muestra que, a pesar de ser los M.S. ambos positivos, el margen de seguridad del tubo 1 es bajo, por esta razón se corrobora todo el cálculo con un modelo de elementos finitos, el cual arroja los siguientes resultados para el caso de carga #4 bajo carga última:

Figura 22 - Pandeo mediante elementos finitos

Se puede observar que la diferencia del cálculo manual con respecto al cálculo de elementos finitos es considerablemente grande, por lo cual se decide corroborar si al nivel de cargas que devuelve ANSYS, el tubo no supera la plasticidad, si esto sucediera no se puede confiar en la respuesta del programa ya que no tiene en cuenta plasticidad para esta clase de problemas de pandeo.

A continuación se muestra la figura con las tensiones con las que se carga el elemento al aplicar a la estructura un 90% mas de carga según indica el multiplicador de carga de ANSYS:

Figura 23 - Nivel de tensión a carga última multiplicada por un factor de 1,9

Teniendo en cuenta que para el SAE 4130 la tensión de plasticidad en compresión (F_{cy}) es de 75 [ksi], y como se puede ver en la figura 15, existen zonas donde las tensiones se elevan hasta 100 [ksi], se concluye que el estudio de pandeo utilizando elementos finitos, en este caso, no es fiable.

Aún así, los márgenes de seguridad calculados manualmente son positivos, y considerando que el coeficiente de segurad utilizado es de J=1,725, se puede aseverar que la estructura no fallará por pandeo a carga última, cumpliendo con el requisito de diseño correspondiente.

3.4.3 - Diseño y corroboración de tomas bancada motor y bancada para-llama.

Luego de las verificaciones correspondientes al diseño general de la bancada, se deben de corroborar las tomas como sub-modelados detallados.

Dentro de los diseños realizados, se incluye las tomas de unión bancada-motor, y las tomas de sujeción bancada-parallamas, a continuación se muestran los modelos detallados de bancada y tomas:

Figura 24- Modelo detallado de bancada

Las piezas deben de cumplir con los requerimientos de bancada al igual que cualquier pieza de la misma, para que esto se cumpla, se busca las piezas o zonas más comprometidas de la bancada y se utilizan como base de diseño, es decir, si estas piezas cumplen con los requerimientos, las demás piezas o zonas de bancada cumplirán ya que están sometidas a cargas menores.

Las zonas más comprometidas según las cargas en cada tubo se indican a continuación:

Figura 25 - Zonas mas comprometidas

Se muestran a continuación los detalles de las zonas 1 y 2 las cuales son las más comprometidas en la estructura:

Figura 26 - Detalle bancada toma motor (detalle 1 figura 17)

Figura 27 - Detalle bancada toma superior izquierda para-llamas (detalle 2 figura 17)

Figura 28 - Toma lateral motor

El sub-modelado se realizó a cada pieza por separado, aplicando las cargas resultantes en cada tubo, buscando márgenes de seguridad y tensiones para asegurar los criterios de diseño.

Primeramente se utilizó un modelo de elementos finitos para ensayar el conjunto unión bancada motor, compuesto por los tubos que confluyen al nodo, los bulones que sujetan la toma de aluminio 7075 y la sujeción del motor, en la imagen superior, es el detalle 1.

Seguidamente se realizó un segundo modelo de elementos finitos para corroborar el diseño de la unión bancada para-llamas, utilizando las mismas técnicas de elementos finitos, en la figura se identifica como el detalle 2.

Cabe destacar que los modelos mostrados son simplificaciones para evitar errores en el programa de cálculo, por lo que para la construcción, que para la toma de aluminio se utilizará tecnología CNC, se debe especificar radios de empalme en todos los casos.

3.4.4 - Sub modelado conjunto unión bancada motor

El modelo, junto con su mallado, es el siguiente:

Figura 29 – Sub-modelado toma motor izquierda

Para la modelación de la pieza se aplicó un soporte fijo en la pieza de sujeción del motor, esto quiere decir que la pieza quedará fija en las ecuaciones.

Para simular el fenómeno, se aplican las cargas en los tubos, así, junto con la sujeción del soporte fijo, se simula el estado de cargas del conjunto, y se obtienen las tensiones junto con los márgenes de seguridad.

Se aclara que para el modelo se tiene en cuenta las pre-cargas de los bulones (cargas de ajuste), que representan el 60% de la carga de rotura del bulón.

Es de interés en este tipo de modelaciones tener información sobre cantidad de elementos del mallado y calidad de los mismos, esta información se adjunta a continuación:

Figura 30 - Información de mallado

Para interpretar el gráfico de barras superior se sabe que el programa pondera la calidad de los elementos en el rango de [0,1], se puede observar que la mayor cantidad de elementos es de excelente calidad, por lo que la confiabilidad en el modelo aumenta.

La cantidad de nodos y de elementos se ve en la tabla inferior, se observa que el modelo cuenta con 98545 elementos y 345351 nodos, que para un modelo mecánico de este tipo, es un número de elementos suficiente para brindar resultados confiables sin tanta inversión en tiempo de cálculo.

Los resultados se separaron en dos, los resultados obtenidos de los tubos, y los resultados obtenidos de la toma de aluminio:

Figura 31 - Margen de seguridad de tubos vista numero 1 - carga última

Figura 32 - Margen de seguridad tubos vista numero 2 - carga última

Figura 33 - Detalle zona de singularidad

Se observa en los resultados arrojados por el programa, que los márgenes de seguridad son altos en los tubos, esto concuerda con los cálculos generales realizados de manera analítica.

Sin embargo, la pequeña zona roja que se observa en la imagen, se debe a una singularidad del modelo, por lo tanto, se concluye que no compromete la integridad de la pieza.

3.4.5 - Análisis de toma bancada motor (aluminio 7075-T6)

Los resultados de la toma de aluminio se presentan a continuación:

-0.98392 Min

L -1

Se observa que en los resultados hay zonas rojas, lo que nos estaría diciendo a priori que hay zonas comprometidas, pero este debe analizarse de acuerdo al modelo con el cual se cuenta:

En la parte trasera de la pieza, la cual muestra una zona redondeada donde los márgenes de seguridad decaen debajo de cero, se debe de analizar el gradiente de tensiones para concluir si es un problema estructural de la pieza en si, o si se trata de un problema con el modelo. Los modelados con métodos numéricos tienen puntos de incertidumbre debido a que no es posible modelar matemáticamente con exactitud analítica en estos tipos de soluciones. Dicho esto se analiza el gradiente de tensiones en ese sector:

Figura 36 - Análisis del gradiente de la toma

Como se puede ver, en pocos milímetros, la tensión se cuadruplica, este fenómeno no es natural en las piezas mecánicas, observando las zonas colindantes se distingue que las tensiones son bajas en general, para este caso se concluye que, la zona en rojo se desestima, se le atribuye este resultado al modelo en sí, que en esa superficie fue configurado con un contacto "bonded" (en inglés, pegado) por lo que no deja libres desplazamientos ni rotaciones, elevando las tensiones ante cualquier posible desplazamiento de las piezas en contacto.

También se debe analizar la zona en rojo expuesta en la imagen siguiente:

Figura 37 - Zona de tensión alta en el nervio

Para casos como estos, el motivo la gran mayoría de las veces, es que las tensiones se ven aumentadas por falta de radios en el modelo que suavicen las tensiones. Se sabe que los bordes filosos son concentradores de tensiones, normalmente en piezas mecánicas se utilizan radios de empalme.

No vale la pena aumentar el nivel de detalle en el modelo ya que lo que se busca es un nivel de tensiones general y de antemano se espera que ocurran estos fenómenos en los bordes filosos de la pieza; por lo que la zona en rojo se desestima y se mira unos milímetros distantes a la misma.

En la parte frontal de la pieza, se encuentran unas pequeñas líneas rojas, el detalle a continuación:

Figura 38 - Zonas de tensión alta en bordes de elementos

En este caso, el rojo se encuentra en una línea de borde de elementos, para estos modelos, cuando las zonas abarcan pocos elementos (en este caso, no involucran en ningún caso un elemento completo), se atribuye a errores generales del modelo, se suele mirar alrededor para determinar la congruencia, se observa que las zonas aledañas son de bajísimas tensiones, por lo que las partes rojas que llaman la atención, también son desestimadas.

A modo de conclusión, se puede ver que en la pieza domina el color azul, sinónimo de bajas tensiones, por lo que para el caso la pieza cumple con el requerimiento, hasta incluso se podría continuar con un análisis de optimización de peso y material, se decide no realizar este análisis ya que el peso no es problema debido a la reducción peso en el motor, y es preferible obtener una pieza robusta que soporte con buen margen las tensiones y esto también, indirectamente, influye en un aumento de vida útil debido a la fatiga.

3.4.6 - Análisis de la unión bancada para-llamas.

Se debe analizar también la unión bancada para-llamas que es otra de las uniones muy solicitadas en la estructura de la bancada; para esto, se realizó un segundo sub-modelado analizando el las cargas y tensiones mediante el método de elementos finitos, dicho sub-modelado corresponde a la zona 2 de la figura **¡Error! No se encuentra el origen de la referencia.**).

El sub-modelado se muestra a continuación:

Como se mostró anteriormente, se incluye los datos del mallado:

D	etails of "Mesh"										
	Patch Conforming Optic	ons									
	Triangle Surface Mesher	Program Controlled									
	Patch Independent Opti	ons									
	Topology Checking	Yes									
Đ	Advanced	Advanced									
Ð	Defeaturing										
	Statistics										
	Nodes	547172									
	Elements	283021									
	Mesh Metric	Element Quality									
	Min Min	0.178075995273426									
	Max Max	0.999996048246634									
	Average	0.840601775670968									
	Standard Deviation	0.100530745289897									
Ν	lesh Metrics							ą			
	Controls	Tet10		Hex20							
	u 0.00 u 0.00 u 0.18 N	0.25	0.38	0.50	0.63	0.75	0.88	1.00			
	Messages Mesh Met	trics									

Figura 40 - información del mallado

Se puede observar que la calidad de la malla es en general muy buena, dominando los elementos de buena calidad (0.88 y 1.00) sobre el total de elementos, para este modelo el total de elementos es de 283021, mayormente tetraedros de diez nodos, para el tamaño del modelo, es un número importante de elementos, mejorando la precisión de los resultados.

Se muestran a continuación los resultados que nos devuelve el programa:

Figura 41 - M.S. unión bancada para-llama

Se puede observar que en este sub-modelado, los márgenes de seguridad son muy altos, ninguno menor a 1, por lo que no se presentan zonas de compromiso según las cargas últimas analizadas.

Debido a este resultado, no se analiza la respuesta del modelo a carga límite, se considera que dará resultados aún más favorables como resulto ser en el primer sub-modelado, de esta manera se ahorra tiempo en el caudal de cálculos.

3.5 - Selección de elementos unión bancada – fuselaje.

Este punto del trabajo se lo considera como una corroboración de que las uniones bancada-fuselaje son suficientemente resistentes para las cargas a la que estarán sometidas, considerando que para utilizar bulones de mayor diámetro es necesario modificar el fuselaje del avión, acción que se debe evitar para evitar un análisis mucho más profundo del que se hizo hasta ahora en la estructura del avión, desde el para-llama hacia atrás.

De nuevo, se selecciona la unión más crítica y se corrobora la resistencia de los bulones con esa unión, se trata de la misma unión analizada en la Figura 25.

NOTA: Se debe tener en cuenta que para la tracción hay que sumar la pre-tensión que tienen los bulones por el ajuste de por sí, las cargas en los bulones se detallan en la tabla siguiente:

Tubo	α [°]	Sen (α) (corte)	Cos (α) (tracción)	Carga (sobre el tubo) [Lb]	Corte sobre el bulon [Lb]	Tracción sobre el bulón [Lb]
2	25.23	0.43	0.90	4535.52	1933.28	4102.85
3	25.50	0.43	0.90	717.01	308.68	647.16
		8160.00				
		2241.96	12910.01			

Tabla 24 - Tracción y corte en bulones

Luego, se utiliza la figura de la referencia 1, para determinar los márgenes de seguridad de los bulones:

Figura 42 - Obtención del margen de seguridad del bulón

De la figura, resulta la siguiente tabla, en la cual se determinan los márgenes de seguridad teniendo en cuenta tracción y corte, según este método ambos márgenes deberían ser iguales, pero se deben considerar errores de apreciación de la figura, se toma como válido el más chico de ambos márgenes.

Corte máximo según figura [lb]	Tracción máxima según figura [lb]
2400	13600
M.S.	M.S.
0.070	0.053

Tabla 25 - Margen de seguridad obtenido de figura 25

Como se aprecia en la tabla, el margen de seguridad más chico es mayor a cero, pero es muy pequeño, esto puede introducir incertidumbre a la resistencia del bulón, se decide utilizar el modelo de elementos finitos empleado en la unión, analizando el bulón con los datos de resistencia de los AN - 7.

Se presenta los resultados obtenidos analizando el bulón con un coeficiente de seguridad a carga última de 1.725:

Figura 43 - Margen de seguridad del bulón mediante elementos finitos a carga última

Como se aprecia en los resultados obtenidos mediante el método de elementos finitos, el bulón presenta márgenes de seguridad mayores a uno, por lo que se puede suponer que no fallará en los estados de carga a los que estará sometido.

Con estos resultados se puede concluir que el estudio estático estructural cumple con los requisitos de diseño planteados al principio.

3.6 - Análisis de las uniones soldadas.

Debido a que existen varios puntos de la bancada donde existen uniones soldadas y esto afecta directamente la resistencia de la misma, se debe de hacer un análisis de las uniones para determinar si no fallarán en dichos puntos de incertidumbre, como son, las soldaduras.

Las soldaduras trabajan al corte, es decir, su resistencia disminuye considerablemente a la tracción, tal es así que a la tracción no se considera unión en absoluto, en cambio, al corte, la resistencia es menor por un cambio local de propiedades comparada al material sin soldar, la forma de calcular la resistencia es la siguiente:

Figura 45 - Resistencia de uniones soldadas

 $P_{ws} = 0.707 * t * l * F_{wsu}$

Dónde:

P_{ws} = Carga admisible en la unión soldada.

t = Espesor.

I = Largo de cordón.

F_{wsu} = Tensión al corte última del material de aporte.

Por consiguiente, se presenta la tabla de tensiones al corte del acero 4130 según referencia [2] :

Material	Heat treatment subsequent to welding	Fsu, ksi	Ftu. ksi
Carbon and alloy steels .	None	32 32	51 51
Alloy steels	None	43	72
Alloy steels	Stress relieved	50	85
Alloy steels	Stress relieved	60	100
Steels	Quench and temper .		
4130 4140 4340	125 ksi 150 ksi 180 ksi	63 75 90	105 125 150

Tabla 26 - Fsu de aceros

Tubo	Unión	Longitud de soldadura [in]	t [in]	Resistencia del cordón Fsu [psi]	Area [in ²]	Carga admisible [lbs]	Carga aplicada en tubo [lbs]	M.S.
1	1 y A	3.84	0.058	43000	0.22272	6770.91	5700	0.19
1	1 y 7	1.86	0.058	43000	0.10788	3279.66	5700	-0.42
2	2 y B	3.06	0.058	43000	0.17748	5395.57	4506	0.19
2	2 y 7	1.1	0.058	43000	0.0638	1939.58	4520	-0.57
2	3 y B	2.44	0.058	43000	0.14152	4302.35	74.0	4.99
3	3 y 7	1.74	0.058	43000	0.10092	3068.07	/ 10	3.27
4	4 y C	3.84	0.058	43000	0.22272	6770.91	1711	2.96
4	4 y 7	1.86	0.058	43000	0.10788	3279.66	1711	0.92
5	5 y C	3.06	0.058	43000	0.17748	5395.57	2242 5	1.41
5	5 y 7	1.1	0.058	43000	0.0638	1939.58	2242.3	-0.14
6	6 y D	2.44	0.058	43000	0.14152	4302.35	2400.0	0.35
Ö	6 y 7	1.74	0.058	43000	0.10092	3068.07	3180.8	-0.04

Se presenta a continuación los resultados obtenidos del análisis:

Tabla 27 - M.S. cordón soldadura

Se observa que los tubos 1,2,5 y 6 fallan en las uniones con el tubo 7, esto se debe a que el ángulo entre ellos es demasiado grande y en consecuencia la longitud efectiva del cordón de soldadura es muy chica, por lo tanto se debe utilizar alguna opción constructiva para obtener longitudes efectivas más largas, se decide utilizar un refuerzo conocido por su nombre en inglés como "finger patch", a continuación un gráfico de la solución:

Remotorización Piper Brave

Bucci – Dirrheimer

LONGERON DENTED AT A STATION.

PATCH PLATE BEFORE FORMING AND WELDING.

PATCH PLATE FORMED AND WELDED TO TUBES. Figura 46 - Refuerzo "finger patch"

Como se puede visualizar, los largos de los cordones en los laterales del refuerzo son de 1.5 veces el diámetro del tubo en el que se está soldando, si se aplicara este refuerzo a ambos lados del tubo, se contaría con cuatro cordones siguiendo la dirección del tubo de 1.5 veces el diámetro del mismo, con estas consideraciones, se decide aplicar estos refuerzos en los nodos comprometidos, y se recalculan los márgenes de seguridad, brindando los siguientes resultados:

Tubo	Unión	Longitud de soldadura [in]	t [in]	Resistencia del cordón Fsu [psi]	Area [in ²]	Carga admisible [lbs]	Carga aplicada en tubo [lbs]	M.S.
1	1 y A	3.84	0.058	43000	0.22272	6770.91	5700	0.19
l	1 y 7	6.36	0.058	43000	0.36888	11214.32	5700	0.97
C	2 y B	3.06	0.058	43000	0.17748	5395.57	4506	0.19
2	2 y 7	5.6	0.058	43000	0.3248	9874.24	4520	1.18
c	3 y B	2.44	0.058	43000	0.14152	4302.35	710	4.99
3	3 y 7	1.74	0.058	43000	0.10092	3068.07	/ 10	3.27
4	4 y C	3.84	0.058	43000	0.22272	6770.91	1711	2.96
4	4 y 7	1.86	0.058	43000	0.10788	3279.66	1711	0.92
F	5 y C	3.06	0.058	43000	0.17748	5395.57	2242 5	1.41
Э	5 y 7	5.6	0.058	43000	0.3248	9874.24	2242.3	3.40
C	6 y D	2.44	0.058	43000	0.14152	4302.35	2400.0	0.35
Ø	6 y 7	6.24	0.058	43000	0.36192	11002.73	3180.8	2.46

Figura 47 - M.S. soldadura con refuerzo "finger patch"

Se observa que los márgenes de seguridad son positivos, además se observa que el margen de seguridad más chico es igual a 0.19, se considera que ante estos márgenes, la bancada no debería fallar en sus cordones de soldadura en cargas normales de trabajo, ya que estos resultados son considerando siempre el estado de carga más crítico de todos.

Capitulo 4 - Análisis de vibraciones.

4.1 – Estudio de espectro de vibraciones típico.

Con respecto al análisis de vibraciones, el trabajo se limita a definir un espectro de vibraciones típico para esta clase de instalación (turbo hélice, con hélice tractora, monomotor) y compararlo con las frecuencias naturales del modelo de bancada y determinar, en un principio, si es necesario un estudio profundo para determinar las cargas dinámicas.

El espectro de vibraciones típico de esta clase de instalación es el siguiente según la Ref. 8:

FIGURE 514.5C-9. Propeller aircraft vibration exposure. Figura 48 - Espectro de vibraciones típico

El mismo se obtuvo siguiendo el método de la referencia 8, obteniendo el siguiente espectro de vibraciones para el caso particular del motor y hélice instalados.

Figura 49 - Espectro de vibraciones del modelo

4.2 – Estudio de las frecuencias naturales de la bancada.

Luego, se analiza mediante elementos finitos, las frecuencias naturales de la bancada.

El sistema devuelve resultados de vibraciones tanto direccionalmente, como en rotaciones, las tablas de resultados se muestran a continuación para los 10 modos que le fueron solicitados al programa.

Se solicitan sólo los 10 primeros modos de vibración ya que se considera que la estructura vibra en su totalidad cuando supera el 90% de la fracción de masa (Mass Fraction – Tabla 25) y se busca la menor frecuencia que haga vibra al menos este porcentaje.

		**** PZ	ARTICIPATION FACT	FOR CALCULAT	ION ***** X DIR	ECTION	
						CUMULATIVE	RATIO EFF.MASS
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION	TO TOTAL MASS
1	18.6517	0.53614E-01	0.35391E-01	0.074051	0.125249E-02	0.536608E-02	5.17E-03
2	21.3023	0.46943E-01	-0.28450E-02	0.005953	0.809396E-05	0.540075E-02	3.34E-05
3	56.2580	0.17775E-01	-0.47792	1.000000	0.228409	0.983980	0.942041
4	73.3830	0.13627E-01	0.29824E-02	0.006240	0.889454E-05	0.984018	3.67E-05
5	78.5527	0.12730E-01	0.10155E-01	0.021249	0.103131E-03	0.984460	4.25E-04
6	83.4428	0.11984E-01	-0.91433E-03	0.001913	0.836006E-06	0.984464	3.45E-06
7	86.5667	0.11552E-01	0.34164E-03	0.000715	0.116716E-06	0.984464	4.81E-07
8	88.3898	0.11314E-01	0.52328E-01	0.109490	0.273821E-02	0.996196	1.13E-02
9	92.6968	0.10788E-01	-0.32653E-04	0.000068	0.106624E-08	0.996196	4.40E-09
10	93.7223	0.10670E-01	-0.29799E-01	0.062352	0.887998E-03	1.00000	3.66E-03

Tabla 28 - Frecuencias naturales dirección X

	***** PARTICIPATION FACTOR CALCULATION ***** Y DIRECTION									
						CUMULATIVE	RATIO EFF.MASS			
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION	TO TOTAL MASS			
1	18.6517	0.53614E-01	0.10672E-01	0.021752	0.113896E-03	0.471876E-03	4.70E-04			
2	21.3023	0.46943E-01	0.49063	1.000000	0.240722	0.997795	0.992823			
3	56.2580	0.17775E-01	-0.20459E-02	0.004170	0.418564E-05	0.997813	1.73E-05			
4	73.3830	0.13627E-01	0.88375E-02	0.018012	0.781007E-04	0.998136	3.22E-04			
5	78.5527	0.12730E-01	0.11386E-03	0.000232	0.129641E-07	0.998136	5.35E-08			
6	83.4428	0.11984E-01	0.19504E-01	0.039752	0.380394E-03	0.999712	1.57E-03			
7	86.5667	0.11552E-01	0.77808E-02	0.015859	0.605401E-04	0.999963	2.50E-04			
8	88.3898	0.11314E-01	0.24195E-03	0.000493	0.585378E-07	0.999963	2.41E-07			
9	92.6968	0.10788E-01	0.29690E-02	0.006051	0.881500E-05	1.00000	3.64E-05			
10	93.7223	0.10670E-01	-0.54325E-04	0.000111	0.295119E-08	1.00000	1.22E-08			
	Tabla 29 - Frequencias naturales dirección Y									

icias naturales c

		* * *	*** PARTICIPATION	FACTOR CAL	CULATION ***** Z	DIRECTION	
						CUMULATIVE	RATIO EFF.MASS
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION	TO TOTAL MASS
1	18.6517	0.53614E-01	0.48832	1.000000	0.238452	0.987501	0.983458
2	21.3023	0.46943E-01	-0.10491E-01	0.021484	0.110064E-03	0.987956	4.54E-04
3	56.2580	0.17775E-01	0.36920E-01	0.075607	0.136310E-02	0.993601	5.62E-03
4	73.3830	0.13627E-01	-0.35472E-03	0.000726	0.125829E-06	0.993602	5.19E-07
5	78.5527	0.12730E-01	0.37176E-01	0.076132	0.138207E-02	0.999326	5.70E-03
6	83.4428	0.11984E-01	0.13244E-03	0.000271	0.175400E-07	0.999326	7.23E-08
7	86.5667	0.11552E-01	0.21535E-03	0.000441	0.463736E-07	0.999326	1.91E-07
8	88.3898	0.11314E-01	0.12652E-01	0.025909	0.160064E-03	0.999989	6.60E-04
9	92.6968	0.10788E-01	0.25803E-04	0.000053	0.665796E-09	0.999989	2.75E-09
10	93.7223	0.10670E-01	0.16544E-02	0.003388	0.273711E-05	1.00000	1.13E-05

Tabla 30 - Frecuencias naturales dirección Z

	***** PARTICIPATION FACTOR CALCULATION *****ROTX DIRECTION								
						CUMULATIVE			
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION			
1	18.6517	0.53614E-01	4.0792	0.209182	16.6398	0.361906E-01			
2	21.3023	0.46943E-01	-0.78706E-01	0.004036	0.619468E-02	0.362041E-01			
3	56.2580	0.17775E-01	0.29554	0.015155	0.873454E-01	0.363941E-01			
4	73.3830	0.13627E-01	3.7733	0.193496	14.2379	0.673607E-01			
5	78.5527	0.12730E-01	-0.97113E-01	0.004980	0.943091E-02	0.673812E-01			
6	83.4428	0.11984E-01	-2.1056	0.107973	4.43339	0.770235E-01			
7	86.5667	0.11552E-01	-19.501	1.000000	380.278	0.904105			
8	88.3898	0.11314E-01	-0.51858E-01	0.002659	0.268930E-02	0.904111			
9	92.6968	0.10788E-01	-6.6399	0.340495	44.0882	1.00000			
10	93.7223	0.10670E-01	0.88834E-02	0.000456	0.789157E-04	1.00000			

Tabla 31 - Frecuencias naturales rotación eje X

		**** PARTI	CIPATION FACTOR	CALCULATION	****ROTY DIRECT	ION
						CUMULATIVE
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION
1	18.6517	5.36E-02	-596.43	1.000000	355723.	0.993903
2	21.3023	4.69E-02	12.799	0.021460	163.824	0.994361
3	56.2580	1.78E-02	-42.797	0.071756	1831.61	0.999479
4	73.3830	1.36E-02	0.35123	0.000589	0.123362	0.999479
5	78.5527	1.27E-02	-9.1039	0.015264	82.8812	0.999711
6	83.4428	1.20E-02	-0.91623E-01	0.000154	0.839473E-02	0.999711
7	86.5667	1.16E-02	-0.14367	0.000241	0.206420E-01	0.999711
8	88.3898	1.13E-02	9.0158	0.015116	81.2848	0.999938
9	92.6968	1.08E-02	0.30186E-02	0.000005	0.911172E-05	0.999938
10	93.7223	1.07E-02	-4.7209	0.007915	22.2867	1.00000

Tabla 32 - Frecuencias naturales rotación eje Y

	***** PARTICIPATION FACTOR CALCULATION *****ROTZ DIRECTION									
						CUMULATIVE				
MODE	FREQUENCY	PERIOD	PARTIC.FACTOR	RATIO	EFFECTIVE MASS	MASS FRACTION				
1	18.6517	0.53614E-01	12.691	0.021248	161.070	0.450346E-03				
2	21.3023	0.46943E-01	597.31	1.000000	356778.	0.997991				
3	56.2580	0.17775E-01	1.3624	0.002281	1.85616	0.997996				
4	73.3830	0.13627E-01	-25.874	0.043318	669.462	0.999868				
5	78.5527	0.12730E-01	0.62276E-01	0.000104	0.387836E-02	0.999868				
6	83.4428	0.11984E-01	-1.3254	0.002219	1.75668	0.999873				
7	86.5667	0.11552E-01	5.3930	0.009029	29.0850	0.999954				
8	88.3898	0.11314E-01	-0.11222	0.000188	0.125929E-01	0.999954				
9	92.6968	0.10788E-01	4.0370	0.006759	16.2973	1.00000				
10	93.7223	0.10670E-01	0.76518E-01	0.000128	0.585502E-02	1.00000				

Tabla 33 - Frecuencias naturales rotación eje Z

4.3 – Conclusión del estudio de vibraciones.

Se ven resaltadas en las tablas las frecuencias naturales de mayor participación, es decir, las que mayor masa hacen vibrar.

Como el espectro de la figura 38 muestra vibraciones aleatorias, es decir, en cualquier dirección, se debe de analizar las frecuencias que presenta en sus picos, y comparar dichas frecuencias con las frecuencias naturales de la estructura, las cuales se encuentran en el rango entre 18.65 Hz hasta los 86.56 Hz.

El primer pico se encuentra a una frecuencia de entre 104.5 Hz hasta 115.5 Hz, a pesar de que en ningún punto se solapan los modos vibratorios, la diferencia (aproximadamente 17 Hz) entre la posible fuente excitación y la frecuencia natural de la estructura hace que valga la pena hacer un estudio dinámico más profundo para determinar con certeza si esto puede o no presentar problemas estructurales, dicho estudio excede este trabajo final de grado.

Capitulo 5 - Análisis de fatiga.

5.1 – Introducción teórica.

El análisis de durabilidad es un estudio algo más complejo que el estático y existen varias formas de determinar la vida útil de la pieza a tratarse según el método que se elija.

Primeramente se debe definir la tensión límite de fatiga (σ'_{fat}), cuyo valor se obtiene directamente del diagrama de Wöhler (Fig 50), considerando que se busca obtener una pieza a vida infinita. Luego de obtener el valor, se procede a corregirlo ya que este dato obtenido diectamente del diagrama se considera que trabaja en condiciones ideales (se entiende por condiciones ideales, una carga totalmente alternada, con probetas con calidad de terminación y del mismo tamaño, entre otras).

Seguidamente, se utiliza el método de Goodman, éste se aplica con el objetivo de corregir la tensión límite de fatiga obtenida del diagrama de Wöhler, llevándola a las condiciones combinadas con tensiones medias distintas de cero (al ser el diagrama de Wöhler obtenido con probetas sometidas a cargas completamente alternadas, con tensiones medias iguales a cero, no se puede comparar con las tensiones de fatiga reales, que normalmente tienen tensiones medias distintas a cero). Hecha dicha corrección, solo resta comparar las cargas reales con la carga alternada equivalente que se obtiene de la ecuación de Goodman, para calcular márgenes de seguridad a vida infinita en cada caso de carga que se analizará en las siguientes páginas.

Las diferentes curvas difieren según la relación de tensiones máximas y mínimas ("stress ratio"). Se utiliza la curva que representa la carga alternada, es decir R=-1 ; para un mejor entendimiento de lo que es una carga alternada, se muestra en la siguiente figura un diagrama de tensión vs tiempo:

Figura 51 - Tensión de tipo alternada

Como se dijo antes, este caso es uno completamente ideal que en general no se dá en el trabajo de la pieza a analizar, además se debe corregir el límite de tensión de fatiga por diferentes factores que se comentan en el siguiente título.

5.2 - Corrección de tensión límite de fatiga

El valor de o'_{fat} se debe corregir ya que el que se obtiene en el diagrama de Wöhler es para una probeta determinada en un ensayo de laboratorio, para la corrección, se utiliza la siguiente ecuación:

$$\sigma_{fat} = k_{load} * k_{size} * k_{surf} * k_{temp} * \sigma'_{fat}$$

Donde:

 σ'_{fat} = tensión límite de fatiga.

0.07((12

 k_{load} (factor por el tipo de carga) : Para cargas combinadas k_{load} = 1

K_{size} (factor de tamaño), para determinar dicho factor se realizan los siguientes cálculos : Para componentes no rotantes: usar diámetro equivalente.

$$A_{95} = 0.0766 * a^{2}$$

$$d_{equiv} = \left(\frac{A_{95}}{0.0766}\right)^{2}$$

$$k_{size} = 0.869 * \left(d_{equiv}\right)^{-0.097} = 0.8935$$

NOTA: las unidades en el ingreso de valores de este conjunto de fórmulas son unidades inglesas, por lo tanto se ingresó d = $\frac{3}{4}$ [in]

K_{suf} (factor de superficie), la determinación de dicho factor se realiza utilizando el siguiente gráfico:

Figura 52 - Corrección por superficie (factor de superficie)

Sabiendo que la tensión ultima del acero 4130 es de 95[ksi], y sabiendo que se puede considerar como pulido comercial (suponer un pulido espejo no es real para este caso), se obtiene que $k_{surf} = 0.9$

 K_{temp} (factor de temperatura), para temperaturas menores a 450°C, k_{temp} = 1.

K_{rel} (factor de confianza), define la incertidumbre en las propiedades de los materiales, en este caso, k_{rel} = 1

Definidos todos los factores, se procede a calcular el σ_{fat} que se utilizará para determinar los márgenes de seguridad:

 $\sigma_{fat} = 1 * 0.8935 * 0.9 * 1 * 1 * 42 [ksi] = 33.77 [ksi]$

5.3 – Generación de la curva de Goodman.

Goodman propone la siguiente ecuación de recta para la generación de su diagrama:

$$\sigma_a = \sigma_{fat} (1 - \frac{\sigma_m}{\sigma_{tu}})$$

Donde:

 σ_{fat} : tensión límite de fatiga.

σ_a: tensión alternante.

 σ_m : tensión media.

 σ_{tu} : tensión última.

Para utilizar este criterio se deben definir algunas de las anteriores variables:

 $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$ = tensión media $\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$ = tensión alternante

Con este dato se puede mostrar un gráfico de Goodman de la estructura de la bancada, un gráfico típico de Goodman se muestra a continuación para luego, con los cálculos realizados, mostrar el gráfico particular de Goodman:

Figura 53 - Diagrama de Goodman típico

Figura 54 - Diagrama de Goodman de la estructura

5.4 – Determinación de cargas actuantes.

Seguidamente, se debe determinar la carga alterna en la que trabaja la estructura, para realizar esta tarea se debe de contar con un perfil de misión típica de fumigación, se cuenta con los siguientes gráficos obtenidos de una misión típica de fumigación:

Figura 55 - Misión típica de fumigación

Como se puede observar en la figura, la carga es aleatoria pero está muy marcada que la carga media se encuentra con un factor de carga n = 1, la primer parte del gráfico corresponde al despegue y ascenso, la parte central a las maniobras de fumigación propiamente dichas, y por último el aterrizaje, para poder definir una carga cíclica de esta información, se deben separar en casos de carga definidos teniendo en cuenta cargas de empuje y torque, que predominan en despegue, y cargas de peso, que predominan en las maniobras, de esta manera se analizan tres casos de carga cíclica por separado y se ubican en el gráfico de Goodman para ver si se encuentran en la zona segura (por debajo de la curva).

Para tener un mayor detalle de la variación del factor de carga durante la misión de fumigación, se analiza el siguiente gráfico que muestra en detalle n vs t específicamente de una pasada completa, la misma consta de entrada a la pasada, vuelo recto y nivelado sobre el lote, salida de la pasada con toma de altura y viraje a la pasada siguiente:

Con esta información, se divide las cargas de la pasada en dos etapas, primera parte y segunda parte, y se analizan por separado, de esta manera se completan los tres casos de cargas, despegue y crucero, y dos etapas de maniobras, ingreso y salida de la pasada, se puede definir gráficamente dichos etapas de la siguiente manera:

Figura 57 - Tipos de carga y sus aplicaciones en perfil de misión básico

Al analizar los dos primeros gráficos, se puede definir el ciclo como un valor máximo de carga y nulo al finalizar la misma, de esta forma, a factor de carga unitario, el perfil de las cargas de empuje y torque sería el siguiente:

Figura 58 - Cargas de empuje y torque

Luego resta definir la entrada en la pasada y la salida, se considera que en el viraje de alineación se encuentra el factor de carga máximo (n=2), para luego en la picada de entrada se presenta un mínimo de factor de carga (n = 0), luego en la salida de la pasada, el factor de carga máximo llega a 1,7 y el mínimo 0,3; dicho esto se presenta el gráfico de la carga, la carga de torque y empuje en pasada corresponde a la potencia de crucero:

Figura 59 - Cargas en pasada

Definidos los ciclos de carga y los factores de carga correspondientes, se prosigue a mostrar el resumen de carga en la siguiente tabla:

Carga media.					
Caso	Torque [Lb-ft]	Fx [Lb]	Fz [Lb]		
1	656.80	1378.47	522.12		
2	525.44	1179.05	522.12		
3	525.44	1179.05	522.12		
	Carga alternada.				
Caso	Torque [Lb-ft]	Fx [Lb]	Fz [Lb]		
1	656.80	1378.47	0.00		
2	525.44	1179.05	522.12		
3	525.44	1179.05	365.48		

Tabla 34 - Cargas medias y alternadas en cada caso de carga

5.5 – Cálculo de Factores de Seguridad.

Antes de seguir con los resultados de tensión en cada tubo y su respectivo factor de seguridad, se debe definir el cálculo de este último, para ello, observando la siguiente figura:

Figura 60 - Ubicación de cargas alternas y medias debajo de la línea de Goodman

Como se puede observar, todo conjunto de carga que se ubique sobre la línea de Goodman, corresponde a un factor de seguridad unitario, para puntos que se ubiquen dentro de la zona segura, el factor de seguridad sigue la siguiente fórmula:

$$F.S. = \frac{\sigma_A}{\sigma_a} = \frac{\sigma_A + \sigma_M}{\sigma_a + \sigma_m} = \frac{\sigma_M}{\sigma_m} = \frac{1}{\frac{\sigma_a}{\sigma_{-1}} + \frac{\sigma_m}{\sigma_F}}$$

Donde:

 $\sigma_{-1} = \sigma_{fat}$

 $\sigma_F = \sigma_{tu}$

Resultados				
σ ₋₁ [ksi]	33.77	σ _{tu} [ksi]	95	
Caso	Tubo	Tensión media [ksi]	Tensión alternada [ksi]	F.S.
1	1	-4.5	5.7	4.63
1	2	11.9	8.8	2.59
1	3	4.75	2.2	8.68
1	4	7.5	4.8	4.52
1	5	3.15	-2	10.82
1	6	3.5	9.7	3.09
1	7	8	4	4.93
2	1	-4.4	-4.4	5.66
2	2	10	10	2.49
2	3	4.5	4.5	5.54
2	4	6.7	6.7	3.72
2	5	3.3	3.3	7.55
2	6	2.3	2	11.99
2	7	7.5	7.7	3.26
3	1	-4.4	-3	7.40
3	2	10	9.4	2.61
3	3	4.5	3.8	6.25
3	4	6.7	6	4.03
3	5	3.3	2.5	9.19
3	6	2.3	3.8	7.31
3	7	7.5	6.5	3.68

Definidos estos factores, se presenta la tabla de resultados a continuación:

Tabla 35 - Coeficientes de seguridad para vida infinita

5.6 – Conclusión de estudio de fatiga.

Se puede observar que los resultados obtenidos son muy favorables con respecto a la vida infinita de la bancada, no debería presentar novedades durante su uso.

Se debe realizar el análisis de fatiga correspondiente a las tomas de Al 7075, pero debido a que la realización de su cálculo implica correr modelos de elementos finitos complejos y que generan un coste de tiempo importante, se deja pendiente, y se aclara que para un estudio completo de bancada, deben de ser realizados para determinar los periodos de inspección de las tomas, como así un estimativo de vida útil de las mismas; ya que el aluminio no presenta características de vida infinita como los materiales ferrosos, tales como el acero 4130 utilizado en la bancada.

Capítulo 6 - Estudio de Performance

6.1 - Grupo motopropulsor

El motor seleccionado para ésta modificación es un turbo-hélice, el cual posee un mejor desempeño en las velocidades y regímenes de vuelo en que se desarrolla el mismo.

El motor es un Pratt & Whitney PT 6-21 el cual será instalado en la naríz de la aeronave, en la misma disposición del motor anterior, modificando levemente el diseño externo del cowling nariz de la aeronave y utilizando un diseño completamente nuevo de bancada, de la cual se ha realizado el estudio.

Figura 61 - PT6A – 21

El proceso de remotorización lleva consigo un amplio estudio que busca determinar la potencia instalada mediante métodos de cálculo propuestos para obtener también las nuevas características de la aeronave.

El ciclo de re-diseño se desarrolla primero seleccionando el motor para luego comenzar el estudio de la selección de una nueva hélice. Esto es debido a que el motor instalado posee una potencia al eje mayor y debe ser transferida y convertida en tracción por una hélice de dimensiones y características específicas.

Una vez obtenidas estas características, se estudia la influencia de este nuevo sistema de propulsión instalado en la aeronave observando sus nuevas performances.

La comprobación de peso y centraje de la aeronave para verificar que la estabilidad de la misma no es afectada, también será un importante punto de estudio.

Si bien el análisis de estas nuevas cualidades deben ser exhaustivas y minuciosas, por cuestiones de tiempo y alcance de este trabajo final de grado, se han estudiado conceptos puntuales y limitados, que llevan a darnos una buena conclusión respecto el resultado de esta remotorización, dejando otros aspectos para estudios futuros.

Remotorización Piper Brave

6.2 - Selección de hélice.

El hecho de poseer una nueva planta motríz, nos hace llevar a cabo un estudio de selección de hélice. Si bien la misma esta referenciada por el fabricante del motor, el estudio que se realiza involucra las performances de nuestra aeronave, y devolverá como resultado las características que mejor reflejaran las dimensiones y propiedades que debemos implementar en el proceso.

Para poder estimar las performances y, por otro lado, los esfuerzos actuantes en la bancada, se requiere saber cuál es la tracción efectiva que el nuevo sistema propulsivo genera en cada condición, una vez que el mismo se encuentre instalado en el avión.

Para poder equipar el motor se realizó una selección de hélice de la cual se calcularon sus dimensiones en base a dos principales características, una especificadas por la normativa y otra por características físicas de la aeronave; el despeje al suelo mínimo para la configuración de tren de aterrizaje tipo convencional, y la segunda es el número Mach límite de puntera.

Figura 62 - Hélice tri-pala de velocidad constante.

Por lo expresado anteriormente, se hace necesario estudiar todos los parámetros relevantes, para las diferentes condiciones de vuelo en las que debe operar el avión, y en base a ello, elegir un diseño que permita operar de manera eficiente y segura, en la condición más crítica de operación.

Para nuestro caso de estudio, el motor opera a 2200 rpm, entregando 550 SHP en condiciones de despegue/ascenso y crucero a nivel del mar.

El límite por compresibilidad se obtiene de la siguiente manera.

$$D = \sqrt{\frac{a^2}{\pi^2 n^2} (M_{tip}^2 - M^2)}$$

Siendo **n** la velocidad de rotación de la hélice [rps], **a** la velocidad del sonido [m/s], \mathbf{M}_{tip} el Mach de puntera de la pala y **M** el Mach de vuelo de estudio.

Para evitar pérdidas por compresibilidad, con los perfiles modernos que se pueden implementar, se observa que el número de Mach de puntera límite para evitar efectos de compresibilidad puede ser de 0.89.

De lo dicho anteriormente, se calculó que el diámetro máximo permitido para no exceder el límite de pérdida por compresibilidad es de 2,39 m. calculado para las condiciones de vuelo a nivel de crucero con un régimen de potencia al 80%, lo que implica una velocidad media de 150kts (0.24 M).

Una vez obtenido el diámetro limite por compresibilidad, se busca el límite por despeje al suelo especificado por norma, (§FAR 23.925), en el cual se indica que con el avión en posición nivelada, con ruedas desinfladas, la punta de hélice debe tener una distancia al piso superior o igual a 9 pulgadas, como se muestra en la siguiente figura.

Figura 63 - Despeje de hélice segun norma

Una vez instalado el grupo motor en la aeronave, la longitud del fuselaje aumenta 0,6 m. Teniendo en cuenta esta alteración, la nueva distancia entre la punta del cono de hélice y el piso es de 1,42 m. Considerando el despeje por norma, obtenemos un diámetro permitido de 2,38 m, el cual respeta el despeje mínimo al piso.

Se recomienda para reducir niveles de emisión de ruido, que el mach puntera no exceda 0.8. Para no alterar tanto la eficiencia de la hélice, se optó por instalar una hélice apenas menor, de 2,36 m, la cual es de menor diámetro que lo calculado, con el fín de atenuar los niveles de emisión de ruido, lo cual quedará pendiente de estudio.

Una vez que se obtiene la dimensión de hélice a instalar, se estudia la eficiencia que posee la misma instalada en la aeronave. Lo mismo se realiza obteniendo los correspondientes factores de avance (**AF**) y el CI de pala para las diferentes condiciones y observando cual es la eficiencia más conveniente para los casos de estudio.

Despegue y ascenso – 80kts					
V [m/s]	n [rpm]	n [rps]	h [m]	a [m/s]	M [-]
42	2200	36,7	0	340	0,12
Potencia [HP]	Potencia [W]	ρ [kg/m³]			
550	410135	1,225			
D [m]	J [-]	Ср [-]	Mtip [-]		
2,1	0,544959128	0,165842592	0,702109516		
2,2	0,520188259	0,131425351	0,734588231		
2,3	0,497571378	0,105233344	0,767106443		
2,36	0,484921258	0,092519342	0,786634291		
2,4	0,476839237	0,085062147	0,799659334		
2,5	0,457765668	0,069357353	0,832242835		

Tabla 36 - Despegue y Ascenso

Crucero al 80% - 150kts					
V [m/s]	n [rpm]	n [rps]	h [m]	a [m/s]	M [-]
77	2200	36,7	4500	322,3	0,24
Potencia [HP]	Potencia [W]	ρ [kg/m³]			
440	328108	0,77			
D [m]	J [-]	Ср [-]	Mtip[{-]		
2,1	0,999091735	0,21107239	0,791911169		
2,2	0,953678474	0,167268629	0,826229418		
2,3	0,912214193	0,133933347	0,860679774		
2,36	0,889022306	0,11775189	0,881406958		
2,4	0,874205268	0,108260915	0,895246987		
2,5	0,839237057	0,088272994	0,929918025		

Tabla 37 - Crucero 80%

MPC – 165kts					
V [m/s]	n [rpm]	n [rps]	h [mts]	a [m/s]	M [-]
85	2200	36,7	4500	322,3	0,26
Potencia [HP]	Potencia [W]	ρ [kg/m³]			
550	410135	0,77			
D [m]	J [-]	Ср [-]	Mtip [-]		
2,1	1,102893473	0,263840488	0,784922531		
2,2	1,052761952	0,209085786	0,818282084		
2,3	1,006989693	0,167416684	0,85179534		
2,36	0,98138826	0,147189863	0,871969702		
2,4	0,965031789	0,135326144	0,885444847		
2,5	0,926430518	0,110341243	0,919215643		

Tabla 38 - Máximo Contínuo

Las tablas 36 a 38 nos muestran los valores de Mach de puntera en las diferentes condiciones, para la hélice seleccionada.

Con los datos obtenidos, se confeccionan gráficos los cuales muestran la relación entre el factor de avance AF y el CI de la pala. Esto debe estudiarse, para observar que condición presenta la mejor performance para la operación de la hélice.

	ascenso y despegue				
	0,15	0,3	0,5	0,7	
80	0,4	0,45	0,48	0,53	
100	0,45	0,47	0,54	0,57	
140	0,5	0,55	0,57	0,58	
180	0,58	0,54	0,57	0,56	

	Crucero 80%				
	0,15	0,3	0,5	0,7	
80	0,6	0,65	0,7	0,74	
100	0,65	0,7	0,73	0,75	
140	0,7	0,73	0,74	0,74	
180	0,73	0,71	0,74	0,7	

	Crucero MPC				
AF CI	0,15	0,3	0,5	0,7	
80	0,57	0,6	0,65	0,71	
100	0,6	0,66	0,71	0,73	
140	0,67	0,72	0,74	0,75	
180	0,7	0,72	0,74	0,73	

Tabla 39 - Factores de Actividad

Obteniendo de esta manera, los gráficos correspondientes para observar la eficiencia.

Figura 64 - Factor de Actividad vs CL pala - 80% de potencia

Figura 65 - Factor de Actividad vs CL pala – Crucero MPC

Por lo general, el conjunto motor – hélice va relacionado con el comportamiento de conjunito motor – avión. Esto quiere decir que si bien el fabricante del motor recomienda un rango y tipo de hélice a instalar, es muy necesario saber primero en que avión irá instalado para garantizar un correcto y eficiente funcionamiento.

Cómo no se encontró información respecto de cómo el motor seleccionado interactua en este avión, se realizaron los cálculos precedentes para obtener de esta forma, la hélice y el comportamiento de el grupo motopropulsor completo.

Luego del estudio que se realizó, se selecciono una hélice tri-pala cuyas características se detallan a continuación:

Diámentro: 2,36 m.

AF: 120

CI: 0,7

Se concluyó con los últimos gráficos que la hélice seleccionada posee una eficiencia cercana al 75%. Este valor es de gran utilidad para el futuro, dónde tendremos que estudiar la performance de la aeronave.

6.3 - Resistencia aerodinámica.

Para hacer uso y verificación de conceptos estudiados, se realizó el cálculo completo de la polar de la aeronave. La polar es una función que relaciona el coeficiente de resistencia (C_D) con el de sustentación (C_L). Esta función es de vital importancia para la estimación del comportamiento del avión y la comprobación de que se cumplen las especificaciones de proyecto.

La construcción de la polar se realiza considerando las distintas partes de la aeronave por separado e integrándolas luego con factores de corrección. Si bien no existe un único tipo de polar, el caso de aproximación polar parabólica simple proporciona buenos resultados y es uno de los casos más estudiados durante los cursos que, para el caso de cálculos preliminares, el alcance es suficiente.

El cálculo de polar se realizó para dos condiciones diferentes. La primera fue el cálculo de polar para el avión estándar, y luego las estimaciones de polar para el avión con la modificación propuesta, con la finalidad de observar comportamientos teóricos de la aeronave antes y después.

El cálculo de polar para el avión sin modificación se realiza para obtener las performances de manera analítica con los métodos de cálculo vistos y luego corroborarlas con lo que se observa en el manual de vuelo de la aeronave emitido por el fabricante, de esta manera, se tiene un mismo resultado por método analítico y por tablas pudiendo así observar la precisión del método de cálculo y obtener un porcentaje de error a aplicar en los cálculos futuros.

Una vez que se obtuvo un aceptable grado de fiabilidad de los procedimientos realizados para los cálculos analíticos, se determina la nueva polar para el avión, esta vez, con la alteración aplicada, para obtener así las nuevas performances, llegando finalmente, a una justificación o conclusión sobre si se obtiene una mejora considerable en este proyecto.

6.3.1 - Cálculo de Polar

Para comenzar con el cálculo de la polar, se obtuvieron referencias del libro *Synthesis of Subsonic Airplane Design*, en donde encuadra el cálculo de polar según el tipo de aeronave, sistema propulsivo y forma, bajo el título de *Low-speed drag estimation method*.

Considerando las características propias de nuestra aeronave, obtenemos el valor de aporte de resistencia parásita para la confección de nuestra polar.

$$C_{DO}S = r_{RE}r_{UC}[r_{t} \{ (C_{D}S)_{w} + (C_{D}S)_{f} \} + (C_{D}S)_{n}]$$

Para obtener el aporte de cada parte, se realizaron tablas, y se calculó lo que cada parte aporta en la ecuación.

6.3.2 - Aporte del Ala – Avión estándar.

r_w = 1

t/c = 0,18

 $\Delta_{25} = 0$

S = 20,96

 $(C_{D}.S)_{w} = 0.0054.S.r_{w}\{1 + 3.(t/c).cos^{2}(45)\}$

 $(C_D.S)_W = 0,17430336$

6.3.3 - Aporte del Fuselaje – Avión estandar.

 $l_{F} = 8,38$ $b_{F} = 1,087$ $h_{F} = 1,90061$ $r_{F} = 1,3$ $(C_{D}.S)_{f} = 0.0031.r_{f}.l_{f}.(b_{f} + h_{f})$ $(C_{D}.S)_{f} = 0,101081$

6.3.4 - Aporte sistema propulsivo – Avión estandar.

 $b_F = 1,087$ $h_F = 1,90061$ $(C_D.S)_n = 0.015.bf.hf$

(C_D.S)_n = 0,031078

Obteniendo finalmente el valor de interés C_{Do} *.S,* que al dividir en la superficie alar, devuelve el valor de interés $C_{Do} = 0,034793$.

 $r_w = 1$ t/c = 0,18 $\Delta_{25} = 0$ S = 20,96 (C_D.S)_w = 0.0054.S.r_w{1 + 3.(t/c).cos² (45)} (C_D.S)_w = 0,17430336

6.3.6 - Aporte del Fuselaje – Avión modificado.

 $I_F = 9,22$ (largo máximo) $b_F = 1,0923$ (ancho máximo) $h_F = 1,90061$ (alto máximo) $r_F = 1,3$ (sección rectangular) $(C_D.S)_f = 0,0031.r_f.l_f.(b_f + h_f)$ $(C_D.S)_f = 0,1106895$

6.3.7 - Aporte sistema propulsivo – Avión modificado.

 $R_n = 1$ (ring-type inlets)

Pto = 550

Φto = 687,5

 $(C_D.S)_n = 0.1.rn. (Pto/\Phi to)$

$(C_D.S)_n = 0,031078$

Obteniendo finalmente el valor de interés C_{Do} .S, que al dividir en la superficie alar, devuelve el valor de interés $C_{Do} = 0,04047534$.

Obteniendo finalmente el valor deseado de C_{Do} , para ir conformando de ésta manera, la polar de la aeronave.

$$C_{\rm D} = C_{\rm Do} + \frac{Cl^2}{\pi.A.e}$$

Polar avión estandar se obtuvo C_{Do} = 0,034793

Polar avión alterado se obtuvo C_{Do}= 0,04047534

Para el valor de e, se utilizó el valor correspondiente a aeronave con equipo de aeroaplicación instalado indicado en la tabla 5-1 de la Ref. 5, e=0,7.

Donde:

- C_{Do} : Coeficiente de Resistencia parásita.
- S : Superficie alar.
- r_{RE}:Factor de corrección por número de Reynolds.
- r_{UC}:Factor de corrección por tren de aterrizaje.
- r, :Factor de corrección por empenaje.
- rw: Factor de corrección por ala según sea cantilever o con montante.

(C_D.S)_w :Ala.

- $(C_{D}.S)_{f}$:Fuselage.
- (C_D.S)_n :Sistema propulsivo.
- t/c : relación espesor cuerda.
- Δ_{25} : Flecha al 25% cam.
- I_F : largo de fuselaje.
- b_F : ancho máximo de fuselaje.
- h_F : alto máximo de fuselaje.
- r_F : Factor de forma, función de la sección transversal del fuselaje.
- 6.4 Distancias de despegue.

El primer cálculo de interés en el cual se enfocó el trabajo, fue en la obtención de las distancias de despegue.

Para poder obtener valores de distancias de despegue, se procedió como se comentó anteriormente, en el cálculo de la polar, diferenciando la misma según el avión se encuentre en la fase de despegue, en tierra o en aire, con los coeficientes correspondientes según la fase.

El proceso de despegue normalmente se lo divide en tres fases, distancia en tierra, distancia en el aire y ascenso.

Diferenciando la etapa del despegue según sea la fase en la que se encuentra, podemos obtener la polar con su formato correspondiente como se muestra a continuación.

Tierra
$$C_{\rm D} = C_{\rm Do} + \frac{1}{\pi.{\rm A.e}} \cdot C_{Lground}^2 + \Delta C_{D\ flap}$$

Aire $C_{\rm D} = C_{\rm Do} + \frac{1}{\pi.{\rm A.e}} \cdot (C_{L\ m\acute{a}x} - \Delta C_L)^2 + \Delta C_{D\ flap}$

La polar para el segmento aire, está definida de esta forma ya que se realizaron comparaciones para varias posiciones de flaps. En la parte tierra, se asume que aún la resistencia inducida por flap no tiene efecto considerable.

Las condiciones en las que se realizó el cálculo fueron para peso máximo de despegue y sin utilización de flaps primero, para luego observar resultados con 15° y 20° de flaps. Estas últimas dos condiciones se realizaron simplemente a modo de observar comportamiento y no comparativas, ya que el manual de operación de la aeronave no posee tablas informativas para tales condiciones de despegue.

En base a ello, se calcularon los correspondientes valores de C_{L máx} , Δ C_L , Δ C_{D prof} , Δ C_{D flap}, para ingresar luego a la correspondiente ecuación.

Donde:

C_D :Coeficiente de Resistencia.

C_{D0} [:]Coeficiente de Resistencia parásita.

- C_{L :} Coeficiente de sustentación.
- A : Alargamiento

- e : Factor de Oswald
- ${}^{\Delta C}_{D}$:Variación del coeficiente de resistencia.
- ΔC_L :Variación del coeficiente de sustentación.

6.4.1- Obtención de C_{Lmáx}

Para la condición de peso máximo de despegue **WTO = 4800 Lbs**:

Flaps 0° Vs = 77 mph (34,4 m/s) 15° Vs = 73 mph (32,6 m/s) 20° Vs = 70 mph (31,3 m/s)

Con los datos de la velocidad de pérdida y la ecuación de sustentación;

Obtenemos los valores correspondientes de C_{L máx} que luego serán utilizados para la obtención de C_D.

 $C_{L máx} = 1,40$ $C_{L máx} = 1,56$ $C_{L máx} = 1,70$

Para la condición de peso de despegue WTO = 3800 Lbs:

Flaps 0° Vs = 69 mph (30,8 m/s) 15° Vs = 65 mph (29,0 m/s) 20° Vs = 62 mph (27,7 m/s)

De allí, obtenemos de la ecuación de sustentación, los valores correspondientes de $C_{L máx}$ que luego serán utilizados para la obtención de C_{D} .

 $C_{L máx} = 1,38$ $C_{L máx} = 1,56$ $C_{L máx} = 1,71$

6.4.2 - Obtención de ΔC_L

La obtención del incremento de sustentación del ala por utilización de flaps se obtiene primero calculando el incremento de sustentación del perfil por la utilización de flaps y con ello, se obtiene el incremento del ala, de la forma que se indica a continuación.

$$\Delta C_{I} = \delta_{f} \cdot \{ \frac{Cl\delta}{Cl\delta theory} \}. C_{I\delta theory}$$

El incremento de sustentación del perfíl se analizó para las 3 condiciones de utilización de flaps. El procedimiento para ellos se baso en el punto 8.1.2 de la Referencia 6 "Trailling edge flaps"

$$\Delta C_{I} = \delta_{f} . \{C_{I\delta/} CI\delta_{theory}\}.C_{I\delta theory} K$$

Flaps 0	0
cf	0,4
t/c	0,166
cf/c	0,2283
К	1
$C_{l\delta \ theory}$	4
$C_{l\delta}/C_{l\delta theory}$	1
ΔC	0

Flaps 15º	0,2618
cf	0,4
t/c	0,166
cf/c	0,2283
К	0,97
$C_{l\delta theory}$	4
$C_{l\delta}/C_{l\delta theory}$	1
ΔCI	1,015784

Flaps 20º	0,349
cf	0,4
t/c	0,166
cf/c	0,2283
К	0,82
$C_{l\delta theory}$	4
$C_{l\delta}/C_{l\delta theory}$	1
ΔCI	1,14472

Tabla 40 - Aumento de CI por flaps

Nota: Para estos cálculos se utilizo un valor Cl α theory = 2π . El valor de pendiente de sustentación se obtuvo de la curva Cl vs α del perfíl 63₃618

C_{Iα}=6,7073 1/rad

Una vez obtenida el incremento de sustentación del perfil, se desarrolla el incremento de sustentación del ala, valor de utilidad para cálculo en la polar.

En el ala finita, el incremento de sustentación será el mismo que se calculó en el perfil, ya que se ve afectado por fenómenos de flujo 3D que cambian este valor. No obstante, una vez obtenido el incremento de sustentación del perfil se corrige el incremento de sustentación en el ala finita, tanto en el rango lineal como en una zona muy cercana a la pérdida.

Tabla 41 - Corrección CL y CL max en ala finita

Así como es de interés observar el incremento de sustentación del ala con la actuación de sistemas hipersustentadores, es de vital importancia conocer también cómo se comporta la resistencia bajo el mismo efecto. Por tal motivo, se desarrollan las tablas que se muestran a continuación, para obtener los valores que aportan a la polar para la obtención de las performances de la aeronave.

Donde:

Cf: Cuerda de flap.

t/c: relación espesor-cuerda.

Cf/c: Relación cuerda de flap - cuerda alar.

K: factor de corrección debido a la no-linealidad a grandes deflexiones de flap.

 δ_f : deflexión de flap.

C_{lotheory}: Factor de efectividad de flap.

6.4.3 - Obtención ΔC_{D flap}.

Tabla 42 - Aumento de resistencia por flaps

Realizados todos los cálculos pertinentes a la obtención de la polar de la aeronave, según la fase de despegue en la que se encuentre, se optó por desarrollar las ecuaciones estudiadas en mecánica del vuelo para la obtención de las distancias de despegue.

Las ecuaciones utilizadas pueden diferenciarse según sea distancia en tierra (S_G) o distancia en aire (S_A) .

Distancia en Tierra

$$S_{G} = \frac{k^{2} W_{TO}^{2}}{\rho S C_{L_{mix}} g \left[T - D - \mu (W_{TO} - L) - W_{TO} \phi \right]} \bigg|_{q = \overline{q}}$$

$$S_{A} = \frac{W_{TO}}{\left(T - D\right)_{q = \overline{q}}} \left[h_{obstáculo} + \frac{\left(V_{2}^{2} - V_{TO}^{2}\right)}{2g} \right]$$

Donde:

- k: Factor de proporción entre V_{TO} y V_{stall}
- W_{TO}: Peso de despegue
- p: Densidad del aire
- S: Superficie alar
- C_{Lmax}: Coeficiente de sustentación máximo
- g: Aceleración de la gravedad
- T: Empuje
- D: Resistencia
- µ: Coeficiente de rosamiento por rodadura
- Φ: Ángulo de inclinación de la pista
- q: Presión dinámica
- V₂: Velocidad de seguridad
- V_{TO}: Velocidad de despegue.

Aplicando las ecuaciones anteriores se se plasman los resultados obtenidos en gráficos. A continuación se presentan las curvas obtenidas dónde podemos apreciar claramente la diferencia en carrera de despegue del avión remotorizado respecto del inicial.

El cálculo de las distancias de despegue fue estudiado para dos condiciones diferentes en las cuales podemos observar la utilización de sistemas hiper-sustentadores y 2 variables en la condición de peso máximo de despegue. Así mismo también puede observarse como varía esta diferencia con la altura.

Figura 68 - Distancia de Despegue

Figura 69 - Distancia de despegue

6.5 - Autonomía

El cálculo de interés que se concentrará en verificar, seguido de las distancias de despegue, y en función de la característica de la modificación implementada, es la de autonomía de la aeronave.

El incremento de potencia no es algo que se obtenga en forma gratuita, y la forma de compensarlo, generalmente, es con un mayor consumo, lo que limita la autonomía de vuelo.

Como nuestro trabajo se concentra en la modificación de planta propulsiva y su correspondiente diseño de bancada, todo lo que forma parte desde la línea de para-llamas de la aeronave, hacia atrás, no fue modificado ya que excede el alcance de este trabajo. Por tal motivo, para no generar grandes alteraciones del peso y balanceo, o cargas estructurales y aerodinámicas, el volumen de carga de combustible de la aeronave no ha sido modificado del original.

Por tal motivo, se realizó un estudio de autonomía de la aeronave para una condición de no modificación de tanques de combustible. Tal condición, puede ser mejorada en gran magnitud con la implementación de tanques suplementarios.

En la figura 71, se muestra como es la disposición de los tanques de combustible originales de la aeronave. Como proyección, los mismos pueden modificarse por unos de mayor volumen, o bien instalarse un tanque ventral, lo que resulta más simple y eficiente.

Figura 70 - Tanques alares

Figura 71 - 3 vistas del Piper Brave

Las características operativas y limitaciones del sistema de propulsión que determinan el consumo de un motor son muy complejas.

Los modelos simplificados de consumo de combustible que usaremos para desarrollar conclusiones son extraídas de biblilografía indicada [Ref 7], las cuales representan con certeza y en un amplio rango, el consumo de los motores, tanto sean alternativos o turbohélices.

La ecuación de autonomía utilizada, es la *ecuación de autonomía de Breguet para aviones a hélice*. Según las hipótesis realizadas, para que esta ecuación sea válida, se debe volar a ángulo de ataque constante y altura constante, que para este tipo de avión, es una condición bastante próxima a la condición normal de vuelo.

$$E = \sqrt{2 \rho_0 S} \frac{\eta_p \sqrt{\sigma}}{SFC} \frac{C_L^{\frac{3}{2}}}{C_D} \frac{1}{\sqrt{W_{inicio}}} \left(\frac{1}{\sqrt{1 - \frac{W_{fiel}}{W_{inicio}}}} - 1 \right)$$

Donde:

E: Autonomía.

S: Superficie alar.

 η_p : Rendimiento de la hélice.

SFC : Consumo específico del motor.

W_{inicio} : Peso de despegue.

W_{fuel}: Peso del combustible.

 ρ_0 : Densidad del aire a nivel del mar.

σ: Relación de densidad.

La ecuación de autonomía fue utilizada inicialmente ingresando los datos ya conocidos de la aeronave estándar y obtener así de forma analítica la autonomía, la cual fue comparada con la leída del manual de vuelo, obteniéndose resultados fiables.

Una vez corroborado el método analítico, se ingresaron los datos de la aeronave remotorizada, obteniendo, como era de esperarse, una autonomía marcadamente menor a la anterior.

Figura 72 – Autonomía

Se observa una marcada disminución en la autonomía de la aeronave con la alteración implementada. Esto se debe al notable incremento en el consumo especifico de la aeronave.

Se puede observar en la tabla comparativa que el consumo de la aeronave aumenta aproximadamente 3 veces. Esto es consecuencia del incremento de potencia, y se recomienda equipar la aeronave con tanques suplementarios. Este estudio no se realizo ya que supera el alcance de este trabajo.

Presentamos a continuación algunos datos técnicos de refencia a modo comparativo entre ambos motores.

Comparación de grupo moto-propulsor.				
	PT6-21	IO 720 D1C		
Potencia al eje (SHP)	550 [HP]	400 [HP]		
Peso (motor seco, con sistema de arranque pero sin sistema de gobernador de hélice ni escapes)	337 [Lb]	614 [lb]		
Consumo de combustible	340 $\left[\frac{Lb}{h}\right]$	120 $\left[\frac{Lb}{h}\right]$		
Tipo de combustible	Jet A-1	100 LL		

Capítulo 7 - Costo y confección de diseño comercial.

Para tener una idea aproximada de los costos totales de la conversión del motor, se confecciona la siguiente tabla con los ítems involucrados en el trabajo.

Descripción	Cantidad	Precio unitario	Total
PT6A-21	1	U\$S 200000	U\$S 200000
Hartzell HC-B3TN-3	1	U\$S 25000	U\$S 25000
Tubo 3/4 0.058	25 [ft]	U\$S 4,64	U\$S 116
Horas hombre	250 [hs]	U\$S 78	U\$S 19500
Varios	1	U\$S 5400	U\$S 5400
	U\$S 250016		

Tabla 43 - Costo comercial

Se debe tener en cuanta que este resumen de costos es conservativo y posiblemente se pueda hacer una optimización de costos para mejorar el precio.

Estos valores estimativos fueron obtenidos de varias páginas web, entre ellas, las principales:

- <u>www.aircraftspruce.com</u>
- <u>http://www.trade-a-plane.com/</u>
- <u>https://www.barnstormers.com/</u>

Conclusión

Al finalizar los estudios volcados en este trabajo final de grado, se llega a la conclusión de que el proceso es posible y conveniente como mejora a la aeronave.

En las cualidades mas notables se destacan el peso, que disminuye, el incremento de potencia, las distancias en despegues, la seguridad en la operación del avión, entre otras cosas.

El cálculo estructural fue satisfactorio, dando márgenes de seguridad positivos y asegurando, en principio, una vida infinita en la estructura de la bancada, a pesar de eso en algunos estudios hace falta profundización pero, por ser un primer loop de estudio, se considera que tanto la estructura de la bancada como la de las tomas y bulones soportan exitosamente las cargas definidas.

Los cálculos realizados respecto a la performance del avión confirman los beneficios del motor turbo helice, el único punto discutible es la autonomía ampliamente reducida, pero al tener un peso vació menor, queda pendiente un estudio para ampliar la capacidad de combustible logrando el mismo peso vacio que el avión original, quedando este estudio fuera del alcance del trabajo y pendiente para futuras investigaciones.

El valor de la conversión se detalla y a pesar de ser un tanto elevado en un primer cálculo, los beneficios en el rendimiento del avión, debido a que con el incremento de potencia planteado, se puede despegar con el avión completo de carga paga a toda hora, esto amplía el rendimiento y por lo tanto los ingresos de la empresa o piloto que opere con el avión desde el punto de vista comercial, justificando así el precio de la conversión.

Además de todos estos objetivos cumplidos desde el punto de vista técnico, el trabajo sirvió a sus autores para aplicar varios de los conceptos aprendidos durante el transcurso de la carrera.

Referencias

- 1. Bruhn, Elmer Franklin: Analysis and Design of Flight Vehicule Structures. (1973)
- 2. Federal Aviation Administration: FAR Federal Aviation Regulations Part 23: Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Category Airplanes. Amendment 55.
- 3. Department of Defense: Metallic Materials and Elements for Aerospace Vehicule Structures MIL-HDBK-5-H. 1998.
- 4. Liberatto A., Tonin A. y Zabala M.: Determinación de la Nucleación de Grietas por Fatiga en Componentes de Aeronaves.
- 5. Torenbeek, Egbert: Synthesis of Subsonic Airplane Design. 1982.
- 6. Roskam Jan: Airplane Aerodynamics and Performance. 1997.
- 7. Scarpín Gustavo: Mecánica del vuelo I. 2012.
- 8. Department of Defense: Test Method Standard for Environmental Engineering Considerations and Laboratory Test MIL-STD-810E. 1989

Anexos

A1 - Cargas en cada tubo:

Caso de Carga	Tubo	Fuerza	Momento flector	Momento torsor
1	1	-19035	22.64	4.18
1	2	15386	7.74	4.94
1	3	5247.1	24.05	0.88
1	4	5521	24	-0.93
1	5	14748	8.24	-4.92
1	6	-18454	23	-4.16
1	7	-461.41	91	14.16
2	1	7615.3	9.05	-1.67
2	2	-6155.4	3.09	-1.97
2	3	-2099.2	9.62	-0.35
2	4	-2208.8	9.57	-0.37
2	5	-5900.4	3.29	1.97
2	6	7382.9	9.24	1.66
2	7	300	36.42	5.66
3	1	-18643	13.76	3.28
3	2	16331	5.46	3.79
3	3	1878.3	18.95	0.29
3	4	6199.1	17.04	-1.07
3	5	6274	9.91	-3.6
3	6	-9478.5	20.92	-2.97
3	7	-663	91.4	10.68
4	1	-23400	19.36	4.33
4	2	20175	6.65	5.02
4	3	3189.4	24.96	0.51
4	4	7578.7	23.02	-1.3
4	5	9959.2	11.97	-4.83
4	6	-14090	26.66	-4.01
4	7	-850.72	114.16	14.22
5	1	-9932.8	5.4	1.14
5	2	9648.7	4.8	1.23
5	3	-1450	6.6	-0.27
5	4	3897.8	4.27	-0.68
5	5	-2798.4	6.67	-1
5	6	1410.6	10.16	-0.75

Remotorización Piper Brave

5	7	-304.29	50.39	3.32
6	1	1404.4	12.5	-0.45
6	2	-4378.7	11.11	0.32
6	3	-4949.3	3.14	1.13
6	4	4949.3	3.14	1.13
6	5	4378.5	11.11	0.32
6	6	-1404.1	12.5	-0.45
6	7	263.69	27.04	3.15
7	1	-4695.5	6.85	0.93
7	2	3459.9	4.27	1.15
7	3	4885.7	16.4	1.19
7	4	4960.8	16.4	-1.19
7	5	3278.8	4.68	-1.18
7	6	-4705.3	7.43	-0.91
7	7	-173.13	21.25	-14.13
8	1	-5365.7	8.15	0.79
8	2	3271.2	4.41	1.32
8	3	1462.7	6.29	0.17
8	4	1295.4	5.88	-0.35
8	5	3775.6	3	-0.75
8	6	-2693.4	1.88	-1.17
8	7	-179.36	21.8	4.16
9	1	1288.7	23.57	1.78
9	2	5837.2	22.58	-0.87
9	3	4755.6	18.8	1.52
9	4	4865.3	18.86	-1.5
9	5	5558.2	20.94	0.75
9	6	896.08	21.7	-1.7
9	7	-162.22	19.48	-12.65
10	1	-10817	12.86	2.37
10	2	8743.4	4.4	2.8
10	3	2981.8	13.67	0.5
10	4	3137.4	13.6	-0.53
10	5	8381.2	4.68	-2.79
10	6	-10487	13.12	-2.36
10	7	-425.72	51.74	8.05
11	1	-5733.2	9.8	0.77
11	2	3233.9	6.46	1.35
11	3	5154.3	17.18	1.16
11	4	4999.9	16.8	-1.33
11	5	0.702	3.28	-0.81
11	6	-3202.7	2.6	-1.13

Remotorización Piper Brave

11	7	-182.19	22.46	14.89
12	1	921.12	22.1	1.76
12	2	5799.9	21.39	-0.84
12	3	8447.3	29.74	2.51
12	4	8569.8	29.81	-2.47
12	5	5484.6	19.35	0.69
12	6	386.71	19.78	-1.66
12	7	-166.09	24.91	23.43
13	1	-11185	14.21	2.36
13	2	8706.1	6.72	2.83
13	3	6673.5	24.6	1.49
13	4	6841.9	24.55	-1.51
13	5	8307.6	7.34	-2.86
13	6	-10996	14.98	-2.33
13	7	-428.55	52.19	18.83
14	1	250.11	20.54	1.62
14	2	5610.8	19.87	-0.67
14	3	5025.5	19.58	1.49
14	4	4905.7	19.25	-1.63
14	5	5981.1	25.68	1.12
14	6	2397.7	27.14	-1.92
14	7	-170.43	20.52	13.55
15	1	-11856	15.87	2.21
15	2	8517	7.02	3
15	3	3251.7	14.46	0.47
15	4	3177.8	14.01	-0.67
15	5	8804.1	2.54	-2.43
15	6	-8985.4	7.79	-2.59
15	7	-434.79	52.83	8.97
16	1	-5201.4	16.1	3.21
16	2	11083	20.07	0.81
16	3	6544.6	27	1.82
16	4	6747.7	27	-1.81
16	5	10587	18.28	-0.92
16	6	-5395.9	14.06	-3.11
16	7	-416.79	33.87	17.47
17	1	-117.44	19.08	1.61
17	2	5573.5	18.67	-0.64
17	3	8717.2	30.51	2.48
17	4	8610.1	30.21	-2.62
17	5	5907.5	24.06	1.06
17	6	1888.4	25.2	-1.89

Remotorización Piper Brave

17	7	-173.26	25.89	24.08
18	1	-13984	26.22	1.94
18	2	7746.1	16.34	3.66
18	3	5826.3	21.2	1.04
18	4	5750.3	20.75	-1.25
18	5	8039	9.51	-3.08
18	6	-11091	17.97	-2.32
18	7	-440.41	53.76	16.82
19	1	-5569	14.43	3.19
19	2	11046	19.01	0.84
19	3	10236	37.94	2.81
19	4	10452	37.97	-2.79
19	5	10513	16.84	-0.98
19	6	-5905.3	11.93	-3.08
19	7	-419.62	37.61	-28.26
20	1	-6240	13.1	3.05
20	2	10857	17.36	1
20	3	6814.5	27.78	1.79
20	4	6788.1	27.41	-1.95
20	5	11010	23.01	-0.55
20	6	-3894.3	19.45	-3.34
20	7	-425.86	51.56	18.18
21	1	-6607.5	11.39	3.03
21	2	10819	16.34	1.04
21	3	10506	38.71	2.78
21	4	10493	38.38	-2.93
21	5	10936	21.51	-0.61
21	6	-4403.7	17.36	-3.31
21	7	-428.69	52	28.91

A2 – Presupuesto comercial trabajo similar como refencia

PRESUPUESTO X

[Documento No Valido Como Factura]

Compañía:	Aeronave:				
Atención:	Mod:	S/N:	Mat:		
Tel:	Fecha: 18 de Agosto de 2016				
Email:	Presupuesto:16-3	79			

Tenemos el agrado de dirigirnos a Ud. con el objeto de elevar a su consideración el presupuesto por las siguientes tareas de mantenimiento, la cual consiste en este caso en la instalación de otro modelo de motor.

MANO DE OBRA

ITEM	TAREA	DESCRIPCION	PRECIO FINAL		
1	Desmontaje	Desmontaje de Hélice Marca Mc Cauley, y Motor marca P&WC, Mod. PT6A-114A. Desmontaje de accesorios para su montaje en el nuevo motor, de acuerdo al DWG 201321- 012. Embalaje de Motor desmontado.	USD	4.269	
2	Montaje	Montaje de Motor Marca P&WC, moldeo PT6A- 140, de acuerdo al DWG 201321-005. Instalación de Controles de motor de acuerdo al DWG 201321-005. Montaje de mangueras y drenajes de acuerdo al DWG 201321-002,	USD	5.069	
3	Desm/Montaje	Montaje de nuevos Instrumentos de Motor, cantidad 5 (cinco), provistos por el STC.	USD	2.728	
4	Modificación	Modificación Eléctrica de acuerdo a DWG varios. Instalación de Starter/Generator de acuerdo a DWG 201207-001/2.	USD	2.409	
5	Montaje	Armado y montaje de Hélice de acuerdo al DWG 201321-008. Balanceo Dinámico.	USD	2.332	
6	Modificación	Modificación de Cowling de acuerdo al DWG 201321-014.	USD	808	
7	Reglaje	Reglaje de motor , y Ground Test	USD	320	
8	P&W	Pesaje de aeronave	USD	1.082	
		TOTAL MANO DE OBRA	USD 19	9.017,00	

Nota: DWG= Drawing de Ingeniería.

Aeropuerto Int. San Fernando, Pcia. de Buenos Aires, Argentina, Tel: 5295-9100, Fax: 4005-7134. Página 1 de 3 pto-16-379-CMD- STC Blackhawck.docx

TERMINOS GENERALES

En el presente presupuesto solo se cotiza la mano de obra de las tareas detalladas. Los consumibles y/o repuestos no significativos se informarán al finalizar la inspección. Los repuestos significativos se informarán en sucesivos presupuestos. Los adicionales que puedan surgir de los trabajos a realizar deberán quedar totalmente cancelados previo al retiro de la aeronave.

Todos los repuestos serán provistos por AVIASER S.A. En caso de que los mismos sean provistos por el cliente se aplicará un recargo en concepto de "Inspección de recepción" equivalente al 15% del precio de lista publicado en la página de TextronCompany.

Lugar de realización de los trabajos: AVIASER S.A.- Aeropuerto Internacional San Fernando (SADF).

Garantía: 6 meses sobre los trabajos realizados.

Fecha estimada de ingreso: 6 de Septiembre 2016.

Este presupuesto NO incluye IVA ni percepciones, retenciones y/o gravámenes impositivos de ninguna naturaleza.

La venta de repuestos que pudieran surgir durante la instalación, por partes componentes no provistas por el CTS, queda sujeta a aprobación de SIMI / LNA.

Los plazos de entrega contemplan tiempos normales en el proceso de compra e importación de repuestos, no seremos responsables de cualquier demora ocasionada por nuevas disposiciones de las autoridades competentes.

<u>Tiempo estimado ingreso de repuestos</u>: 20 días hábiles contados a partir de la aprobación de la SIMI / LNA y del cumplimiento de las condiciones de pago.

Tiempo estimado de ejecución: 15 días hábiles contados a partir del cumplimiento de las condiciones de pago.

ACEPTACION DEL PRESUPUESTO

En caso de aceptación de este presupuesto y a efectos de cumplimentar normas administrativas, solicitamos tengan a bien remitirlo firmado pudiendo ser adelantado vía mail a <u>atencionalcliente@aviaser.com.ar</u> o por FAX al (+5411) 4005-7134.

El presupuesto se considerará aprobado una vez acreditado el anticipo descripto en las "Condiciones de Pago". En caso de no recibir el anticipo correspondiente en los plazos establecidos en "Validez de Presupuesto", el mismo quedara sin efecto.

Validez de presupuesto: 18/09/2016 inclusive.

CONDICIONES

Pago

Mano de Obra: Anticipo 50% para ingresar la aeronave al taller, 50% restante contra entrega de la aeronave.

Forma de Pago:

Mano de obra: Pesos (*)

<u>Repuestos</u>: Se facturarán en dólares estadounidenses y deberá tenerse en cuentael valor de esta moneda para la cancelación de la factura, considerando la cotización del cierre vendedor del Banco de la Nación Argentina del Dólar Estadounidense del día anterior a la fecha de pago. En el supuesto de abonarse con valores diferidos, se considerará la cotización citada previamente, del día de la efectiva acreditación del valor entregado. De producirse diferencias se confeccionará la Nota de Débito correspondiente la que deberá abonarse al contado.

(*) NOTA: No se aceptan pagos diferidos.

Modalidad de Pago:

El pago puede realizarse mediante depósito o transferencia bancaria a la siguiente cuenta:

Aeropuerto Int. San Fernando, Pcia. de Buenos Aires, Argentina, Tel: 5295-9100, Fax: 4005-7134. Página 2 de 3 pto-16-379-CMD- STC Blackhawck.docx

HSBC

<u>N° Cuenta</u>: 6913202315 <u>CBU</u>: 1500691400069132023150

[Los gastos por trasferencia son a cargo del cliente]

Payment by Wire Transfer to: Bank of America, NA 100 N Broadway St, Wichita, Kansas, USA Beneficiary: Aviaser S.A. ABA Routing: 026009593 Account: 0190-9900-1018 SWIFT: BOFAUS3N

A los fines de poder registrar su pago, será necesario que el mismo sea informado a la Srta. Yeny Jurado al mail de <u>cobranzas@aviaser.com.ar</u>, adjuntando el comprobante de depósito o transferencia junto a las retenciones si las hubiera, indicando además las facturas que se están considerando.

Sin otro particular y agradeciendo la oportunidad de trabajar con ustedes, saludamos muy atentamente.

Ing Aer Julian Quintana AVIASER S.A.

Aprobado - Fecha, Firma y Aclaración

Aeropuerto Int. San Fernando, Pcia. de Buenos Aires, Argentina, Tel: 5295-9100, Fax: 4005-7134. Página 3 de 3 pto-16-379-CMD- STC Blackhawck.docx

A3 – DataSheet de la aeronave.

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

A9SO Revision 10 Piper Aircraft, Inc PA-36-285 PA-36-300 PA-36-375 August 7, 2006

TYPE CERTIFICATE DATA SHEET A9SO

This data sheet which is a part of Type Certificate No. A9SO, prescribes conditions and limitations under which the product for which the Type Certificate was issued meets the airworthiness requirements of the Federal Aviation Regulations.

Type Certificate Holder	Piper Aircraft, Inc. 2926 Piper Drive Vero Beach, Florida 32960									
Type Certificate Holder Record	The new Pipe 2006.	The new Piper Aircraft, Inc transferred TC A9SO to Piper Aircraft, Inc on August 7, 2006.								
<u>I Model PA-36-285、1 PCLM (Nor</u> Engine	ormal Category), Approved May 31, 1972. 1 Teledyne Continental 6-285-B or 6-285-C with CMC injector with fuel flow schedu per curve No. 71-12, or 1 Teledyne Continental 6-285-BA or 6-285-CA (See NOTE 9 for -BA and -CA eng with CMC injector with fuel flow schedule per curve No. 77041. Propeller drive ratio crankshaft 0.500:1.									
Fuel	100/130 mini	imum grade aviation gasoline								
Engine Limits	For all operat	tions, 4000 r.p.m. (2000 propeller r.p	o.m.) (285 hp)							
Propeller and Propeller Limits	 1 Hartzell, Hub Model HC-C2YF-1 ()F, Blade Model F9587A Pitch Setting: High 27° to 29°, Low 18° ± 0.2° at 30" station. Diameter: Not over 95", not under 93". No further reduction permitted. Spinner: Hartzell A4203 Spinner Assembly is required. Propeller Governor: Hartzell Model F-4-6A OR 1 Hartzell, Hub Model HC-C3YF-1 ()F, Blade Model F9684-1 Pitch Setting: High 29° to 31°, Low 16.3° to 16.5° at 30" station. Diameter: Not over 95", not under 93". No further reduction permitted. 									
Propeller Limitations	Hartzell Model HC-C2YF-1 ()F only. Avoid continuous operation on the ground between 950 and 1150 propeller r.p.m. in wind above 15 mph.									
Airspeed Limits (CAS)	V _{ne} V _{no} V _p V _{fe}	Never exceed Maximum structural cruising Maneuvering Flaps Extended	182 mph 150 mph 136 mph 115 mph	(158 knots) (130 knots) (118 knots) (100 knots)						

Page No.	1	2	3	4	5	6	7
Rev. No.	9	9	9	9	9	9	9

Same as Model PA-36-285 except engine installation.

Engine	1 Lycoming IO-540-K1G5 with one 5th order and one 6th order pendulum damper.
Fuel	100/130 minimum grade aviation gasoline
Engine Limits	For all operations, 2700 r.p.m. (300 hp)

Page 3 of 7

A9SO

Propeller and Propeller Limits	1 Hartzell, Hub Model HC-C2YF-1 ()F, Blade Model F8475R						
	Pitch Setting: High $29^\circ \pm 1^\circ$, Low $12.0^\circ \pm 0.2^\circ$ at 30" station. Diameter: Not over 84", not under 82.3".						
	No further reduction permitted. Spinner: Piper Drawing 99374 (See NOTE 5 for data on spinner)						
	Propeller Governor: Hartzell Model F-4-11A						
	1 Hartzell, Hub Model HC-C3YR-1 ()F, Blade Model F8468A-6 Pitch Setting: High $26^{\circ} + 1^{\circ}$ Low 11 $8^{\circ} + 0.2^{\circ}$ at 30" station						
	Diameter: Not over 80", not under 78".						
	Spinner: Hartzell 835-36 (See NOTE 5 for data on spinner.) Propeller Governor: Hartzell Model F-4-11A						
Airspeed Limits	V _{ne} Never exceed 182 mph CAS, 177 m.p.h. IAS						
	V _{no} Maneuvering 136 mph CAS, 146 m.p.h. IAS V _p Maneuvering 136 mph CAS, 132 m.p.h. IAS						
Contar of Crewitz Dence	v_{fe} rups extended 115 inpit CAS, 116 in.p.it. IAS						
Center of Gravity Range	(+157.23) at 5000 lb. of less (+139.00) to $(+143.20)$ at 3900 lb.						
	(+140.53) at 2000 lb. of less Straight line variation between points given.						
	137.25 139.00 143.20 146.35						
	LB. 3900						
	3600 -						
	3200 -						
	2800 - NORMAL						
	2400 - CATEGORY						
	136 140 144 148						
	FUSELAGE STATION - INCH						
Empty Weight C.G. Range	None						
Maximum Weight	3900 lb.						
No. of Seats	1 (+196.0)						
Maximum Baggage	None						
Fuel Capacity	89 gallons at (+138.4) (2 wing tanks) (87 gallons usable) See NOTE 1 for data on unusable fuel.						
Oil Capacity	12 quarts (9¼ quarts usable) See NOTE 1 for data on system oil.						

A9SO	Page 4 of 7
Manufacturer's Serial Numbers	36-7560001 through 36-8160023 (See NOTE 6 for airworthiness certification eligibility in the United States).
III Model PA-36-375, 1 PCLM (No	ormal Category), Approved October 4, 1977.
Engine	1 Lycoming IO-720-D1CD or IO-720-D1C with one 3.5 order, six 4th order and one 5th order pendulum damper.
Fuel	100/130 minimum grade aviation gasoline
Engine Limits	For all operations, 2500 r.p.m. (375 hp)
Propeller and Propeller Limits	 1 Hartzell, Hub Model HC-C3YR-1 ()F, Blade Model F8475R Pitch Setting: High 27° ± 1°, Low 13.3° ± 0.2° at 30" station. Diameter: Not over 86", not under 84". No further reduction permitted. Spinner: Hartzell 835-36 (See NOTE 5 for data on spinner.) Propeller Governor: Hartzell Model F-4-23
Airspeed Limits	$\begin{array}{lll} V_{ne} & \mbox{Never exceed} & 189 \mbox{ mph CAS}, & 184 \mbox{ mph IAS} \\ V_{no} & \mbox{Maximum structural cruising} & 150 \mbox{ mph CAS}, & 147 \mbox{ mph IAS} \\ V_{p} & \mbox{Maneuvering} & 136 \mbox{ mph CAS}, & 134 \mbox{ mph IAS} \\ V_{fe} & \mbox{Flaps Extended} & 120 \mbox{ mph CAS}, & 121 \mbox{ mph IAS} \end{array}$
Center of Gravity Range	(+139.00) at 3900 lb. or less (+139.00) to (+143.20) at 3900 lb. (+146.00) at 2740 lb. or less Straight line variation between points given.
	$139.00 143.20 146.35$ $LB. \\ 3000 \\ 3000 \\ 3200 \\ 2800 \\ 2400 \\ 136 140 144 148$ $FUSELAGE STATION - INCH$
Empty Weight C.G . Range	None
Maximum Weight	3900 lb.
No. of Seats	1 (+196.0)
Maximum Baggage	None

		F	Page 5 of 7					А	.9SO
		<u>Fuel Capacity</u> See NOTE 1 fc	89 gallons at r data on unu	(+138.4 Isable f	4) (2 v uel.	wing tanks)	8)	87 gallons usable)	
Oil Capacity		17 quarts See NOTE 1 fc	(14 quarts usa r data on sys	able) tem oil					
Manufacturer's Serial Num	bers	36-7802001 th the United Stat	rough 36-830 es).	2025 (See NO	TE 6 for ai	rworthi	ness certification eligib	llity in
DATA PERTINENT TO ALL M Datum	<u>ode</u>	<u>LS</u> 126.0 inches fo tapered section	rward of the .	wing le	ading e	dge at the i	ntersect	ion of the straight and	
Leveling Means		Two screws rig	ht side fusela	ige, insi	de belo	w window.			
Control Surface Movements	-	Aileron Elevator Elevator Tabs Rudder Flaps	$(\pm 1^{\circ}) (\pm 1^{\circ}) (\pm 3^{\circ}, -1^{\circ}) (\pm 1^{\circ}) (\pm 1^{\circ}) (\pm 1^{\circ}) (\pm 1^{\circ}) $	Up Up Up Left Up Up	20° 30° 15.5° 25° 0°	Down Down Right Down Down	17° 20° 22.5° 25° 30° 20°	Elevator Neutral for PA-36-285 and PA	4-36-300
Certification Basis	FAl date Apj Typ	See NOTE 7 fc R Part 23, effecti ed August 1, 196 plication for Typ e Certificate issu	r flap travel i ve February 7 7. e Certificate d ued May 31, 7	restricti 1, 1965 dated A 1972. (on. ; and ine pril 30, Obtained	cluding An 1969. 1 by the ma	nendme mufacti	nts 23-1 through 23-6 ırer under delegation op	ntion
Production Basis	ADI	proved for manuf	facture of spa	re parts	only u	nder Produ	ction Ce	ertificate No. 206.	
Equipment	The basic required equipment as prescribed in the applicable airworthiness regulations (see certification basis) must be installed in the aircraft for certification. In addition, the followin items of equipment are required:					e ving			
	1.	VB-645 approv 36-746004	ved August 19 41.	9, 1974	, for Mo	del PA-36-	-285, S/	N 36-7360001 through	
	2.	VB-682 approv 36-766013	ved January 3 35.	1, 1975	, for Mo	odel PA-36	-285, S	/N 36-7560001 through	
	3.	Piper Report 20 1974, for 1)32 issued No Model PA-36	ovembe 5-300, S	r 22, 19 /N 36-7	74, and Pip 560001 thr	oer Repo ough 30	ort 2035 issued Novemł 5-8160023.	oer 20,
	4.	Piper Report 21 1977, for 1	14 issued Oc Model PA-36	tober 1 -375, S	1, 1977 /N 36-7	, and Piper 802001 thr	Report ough 3	2115 issued October 1 5-8302025.	Ι,

Page 6 of 7
Current Weight and Balance Report, including list of equipment included in certificated empty weight and loading instructions when necessary, must be provided for each aircraft at the time of original certification.
The certificated empty weight and corresponding center of gravity locations must include undrainable system oil (not included in oil capacity) and unusable fuel as noted below:
$\frac{PA-36-285:}{Fuel: 12.0 lb. at +138.4}$ Oil: 7.5 lb. at +87.0 $\frac{PA-36-300:}{Fuel: 18.0 lb. at +138.4}$
Oil: 3.5 lb. at +88.5 <u>PA-36-375:</u> Fuel: Fuel: 18.0 lb. at +138.4 Oil: 3.5 lb. at +90.5
All placards required in the approved Airplane Flight Manual and approved Airplane Flight Manual Supplements must be installed in the appropriate locations.
The PA-36-285 engine installation consists of the basic Teledyne Continental Motors Model 6-285-B, 6-285-BA, 6-285-C, or 6-285-CA engine with Teledyne Continental Customer Specifications No. 2.
Model PA-36-285, S/N 36-7360001 through 36-7460041 are eligible for multiple airworthiness certification in the Restricted and Normal Categories in accordance with FAR 21.187. Conversion between categories may be accomplished in accordance with Piper Report VB-592.
PA-36-285 aircraft may be operated with Hartzell A4201-1 spinner dome removed. Spinner backup plate must remain installed.
PA-36-300 two-blade propeller aircraft may be operated with spinner dome and forward bulkhead removed. Piper aft bulkhead P/N 67791 is required for flight.
PA-36-300 three-blade propeller aircraft may be operated with spinner dome and filler plates removed. Hartzell aft bulkhead P/N C-885-3 is required for flight.
PA-36-375 three-blade propeller aircraft may be operated with spinner dome and filler plate removed. Hartzell aft bulkhead P/N C-885-3 or P/N C-4549 is required for flight.
The following serial numbered aircraft are not eligible for import certification to the U.S.:
<u>Model PA-36-285:</u> 36-7360050, 36-7460011, 36-7460012, 36-7460013, 36-7460014, 36-7460015, 36-7560088, 36-7660085, 36-7660088, 36-7660091, and 36-7660094.
Model PA-36-300: 36-7760018, 36-7760034, 36-7760047, 36-7760051, 36-7760055, 36-7760120, 36-7760121, 36-7760123, 36-7760125, 36-7760129, 36-7760132, 36-7860010, 36-7860012, 36-7860012, 36-7860043, 36-7860045, 36-7860047, 36-7860049, 36-7860050, 36-7860051, 36-7860094, 36-7860071, 36-7860097, 36-7860099, 36-7860091, 36-7860092, 36-7860093, 36-7860094, 36-7860109, 36-7860097, 36-7860098, 36-7860102, 36-7860102, 36-7860103, 36-7860104, 36-7860105, 36-7860199, 36-7860111, 36-7860112, 36-7860122, 36-7960013, 36-7960007, 36-7960007, 36-7960008, 36-79600010, 36-7960010, 36-7960011, 36-7960012, 36-7960013, 36-7960014, 36-7960015, 36-7960016, 36-7960017, 36-7960018, 36-7960019, 36-8060022, and 36-80600023.

Model PA-36-375: 36-7802034, 36-7802050, 36-7802061, 36-7802062, 36-7802063, 36-7802074, 36-7902001, 36-7902002, 36-7902003, 36-7902020, 36-7902022, 36-7902024, 36-7902033, 36-7902035, 36-7902037, 36-7902048, 36-7902049, 36-7902050, 36-7902051, 36-8002005, 36-8002006, 36-8002011, 36-8002013, 36-8002016, 36-8002018, and 36-8002025.

	Page 7 of 7 A	9SO
NOTE 7	Wing flap travel on Models PA-36-285 and PA-36-300, S/N 36-7360001 through 36-7460041, is $0^{\circ}(\pm1^{\circ})$ Up, and $20^{\circ}(\pm1^{\circ})$ Down.	
NOTE 8	The following life limits are required:	
	For all PA-36 models: The wing main spar lower attachment bolts, Piper P/N 77245-00, must be replaced upon the accumulation 2000 hours time-in-service (TIS) and every 2000 hours TIS thereafter (Ref. Piper Service Bulletin No. 50 The wing main spar upper attachment bolts, Piper P/N 77245-00, must be replaced upon the accumulation 4100 hours TIS and every 4100 hours TIS thereafter (Reference Piper Service Bulletin 744). The wing carry-through spar fittings, Piper P/N 97713-00, 97713-02 or 97713-03, must be replaced upon accumulation of 4100 hours TIS and every 4100 hours TIS thereafter with P/N 97713-03 (Reference Pipe Service Bulletin 744). The wing spar fittings, Piper P/N 97712-00, must be replaced upon the accumulation of 4100 hours TIS a every 4100 hours TIS thereafter (Reference Piper Service Bulletin 744).	i of 1). i of the r nd
	For Models PA-36-285 and PA-36-300, S/N 36-7360001 through 36-7560003 and 36-7660123 through 36-8160023, and Model PA-36-375, S/N 36-7802001 through 36-8302025; The spar carry-through assembly, Piper P/N 97370-00 or P/N 76824-02, as applicable, must be replaced upon the accumulation of 4100 hours TIS and every 4100 hours TIS thereafter with P/N 76824-02 (Reference Piper Service Bulletins 552 and 744).	
	For Models PA-36-285 and PA-36-300, S/N 36-7560056 through 36-8160023 and Model PA-36-375, S/N 36-7802001 through 36-8302025: The spar assembly, Piper P/N 97701-00 (Rev. P) and P/N 97701-01 (Rev. P) must be replaced with Piper 764 393, left spar assembly, and Kit 764 394, right spar assembly, upon the accumulation of 4100 hours T and every 4100 hours TIS thereafter (Reference Piper Service Bulletin 744).	I Kit 'IS
	For Models PA-36-285 and PA-36-300, S/N 36-7560004 through 36-7660122; The spar carry-through assembly, Piper P/N 76767-00 must be replaced upon the accumulation of 4000 h TIS with Piper P/N 76824-02; and P/N 76824-02 must be repalced every 4100 hours TIS thereafter (Reference Piper Service Bulletin 744).	ours
	For Models PA-36-285 and PA-36-300, S/N 36-7360001 through 36-7560055; The spar assemblies, Piper P/N 97701-00 (Rev. N or earlier) and P/N 97701-01 (Rev. N or earlier) must b replaced upon the accumulation of 3100 hours TIS with Piper Kit 764 393 (left spar assembly) and Kit 76 394 (right spar assembly), as applicable; and Kits 764 393 and 764 394 must be replaced every 4100 hou TIS thereafter (Reference Piper Service Bulletin 744).	e 4 rs
NOTE 9	 Field installation of Teledyne Continental engines 6-285-BA and 6-285-CA require the following: (a) Engine installed in accordance with instruction per Teledyne Continental Kit EQ6534, EQ6535 EQ6539 or EQ6540 (Ref. Teledyne Continental Newsletter dated April 4, 1977). (b) Engine cowl modified in accordance with Piper Service Letter No. 774 (Applicable to S/N 36-7360001 through 36-7660102). (c) The following Airplane Flight Manual (AFM) required: 	,
	Aircraft Serial Numbers AFM 36-7360001 through 36-7460041 VB-645 36-7560001 through 36-7660102 VB-682	

....END....

A3 – DataSheet del motor PT6-21

۰r			-		
		TCDS NUMBER	E4EA		
		REVISION: 27*			
	U.S. DEPARTMENT OF	DATE: October	1, 2015		
	TRANSPORTATION				
		PRATT & WHIT	NEY CANADA		
	FEDERAL AVIATION ADMINISTRATION	MODELS:			
		PT6A-6	PT6A-25	PT6A-40	PT6A-61
	TYPE CERTIFICATE DATA SHEET	PT6A-6A	PT6A-25A	PT6A-41	PT6A-61A
		PT6A-6B	PT6A-25C	PT6A-41AG	PT6A-65B
	E4EA	PT6A-6/C20	PT6A-27	PT6A-42	PT6A-65R
		PT6A-11	PT6A-28	PT6A-42A	PT6A-65AR
		PT6A-11AG	PT6A-29	PT6A-45	PT6A-65AG
		PT6A-15AG	PT6A-34	PT6A-45A	PT6A-110
		PT6A-20	PT6A-34B	PT6A-45B	PT6A-112
		PT6A-20A	PT6A-34AG	PT6A-45R	PT6A-114
		PT6A-20B	PT6A-35	PT6A-50	PT6A-114A
		PT6A-21	PT6A-36	PT6A-60	PT6A-116
			PT6A-38	PT6A-60A	PT6A-121
				PT6A-60AG	PT6A-135
					PT6A-135A
E.		PT6A-140A			PT6A-52
		PT6A-140AG			
		PT6A-140			
		PT6B-9			
		PT6B-35F			
		PT6D-114A			

Engines of models described herein conforming with this data sheet (which is part of Type Certificate Number E4EA) and other approved data on file with the Federal Aviation Administration, meet the minimum standards for use in certificated aircraft in accordance with pertinent aircraft data sheets and applicable portions of the Federal Aviation Regulations, provided they are installed, operated, and maintained as prescribed by the approved manufacturer's manuals and other approved instructions.

TYPE CERTIFICATE (TC) HOLDER:	Pratt & Whitney Canada Corp. (Formerly Pratt & Whitney Canada, Inc., Pratt & Whitney Aircraft of Canada, Ltd., and United Aircraft of Canada, Ltd.) Longueuil, Quebec, Canada J4G 1A1
I. MODEL TYPE (see pages 2, 3, 4, 5, 6, 7)	PT6A-6, -6A, -6B, -6/C20, -11, -11AG, -15AG, -20, -20A -20B, -21, -25, -25A, -25C, -27, -28, -29, -34, -34B, -34AG, -35, -36, -110, -112, -114, -114A, -116, -121, -135, -135A, -140, -140AG, -140A, PT6D-114A
II. MODEL TYPE (see pages 8, 9, 10)	Free turbine turbo-prop / 3 axial plus one centrifugal stage compressor / single annular combustion chamber, single-stage gas generator turbine / single-stage power turbine PT6A-38, -40, -41, -41AG, -42, -42A, -45, -45A, -45B, -45R, -50, -60, -60A, -60AG, -61, -61A, -52
III. MODEL TYPE (see pages 10-11)	Free turbine turbo-prop / 3 axial plus one centrifugal stage comp / single annular combustion chamber / single stage gas generator turbine / two stage power turbine PT6A-65B, -65R, -65AR, -65AG
IV. MODEL TYPE (see pages 11-12)	Free turbine turbo-prop / 4 axial plus one centrifugal stage comp / single annular combustion chamber / single stage gas generator turbine / two stage power turbine PT6B-9, -35F Free turbine turboshaft (free turbine turboprop -35F) / 3 axial plus one centrifugal stage comp / single annular combustion chamber / single stage gas generator turbine / single stage power turbine

PAGE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
REV.	27	27	27	22	27	27	27	27	27	27	27	25	27	24	25	27	25	27	27	25	27	27	26	27	27	
LEGEND: "" INDICATES "SAME AS PRECEDING MODEL"																										
"" NOT APPLICABLE																										
NOTE: , SIGNIFICANT CHANGES ARE BLACK-LINED IN THE LEFT MARGIN.																										

I. MODELS	РТ6А-6	PT6A-6A	PT6A-6B	PT6A-11, -11AG	PT6A-20, -20A, - 20B,-6/C20
REDUCTION GEAR RATIO	.0668:1		(
RATINGS					
Equivalent shaft hp.	525			528(580,11A G)	579
Shaft hp.	500			500(550,- 11AG)	550
Jet thrust, lb.	62			70(75,-11AG)	72
Output rpm	2,200				
Gas generator rpm	38,100			(m. m.)	
Takeoff (5 min.) at sea level Equivalent shaft hp.	578			528(580,- 11AG)	579
Shaft hp.	550			500(550,- 11AG)	550
Jet thrust, lb.	70	H -		(75, 11AG)	72
Output rpm	2,200				(-
Gas generator rpm	38,100				
Maximum reverse					
Shaft hp.		500		475	500
Output rpm (max)		2,100	A . .	10.00	10000
Output Shaft	Flanged 4.250" B.C., 8 holes .594 <u>+</u> .005" diameter (See P&WC Installation Drawing)				
I FUEL	See NOTE 8				
OIL	See NOTE 9				
OIL TANK CAPACITY, gal.	2.3				121120
USABLE OIL TANK CAPACITY, gal.	1.5				
USABLE OIL WHEN INVERTED, gal.					
PRINCIPAL DIMENSIONS, m.	(1.00)				
Length	61.89				
Nominal diameter	18.29				
waximum radius	10.85			11.50	-10.85
WEIGHT (DRY) (includes basic engine, fuel and ignition systems but ex- cludes propeller governor (-6 and -20models only) and ignition power source)	280	284		339 340(-11AG)	286(20, 6/C20) 289(20A, 20B)
source)					

<u>TC</u>

TCDS E4EA					PAGE 3
I. MODELS (cont.)	PT6A-6	PT6A-6A	PT6A-6B	PT6A-11,	PT6A-20, -20A, -
				-11AG	20B,
					-6/C20
CENTER OF GRAVITY					
(dry weight) (in.)					
	1.00	1.10		2.10	1.14/00 (1000
Forward of mount plane	4.20	4.40	-1-	3.18	4.14(20, 6/C20
					4.38(20A, 20B)
Aft of forward mount plana				2000 A	
Art of forward mount plane					
Below engine centerline	0.34			0.26	0.45(20.6/C20)
Below englie centerline	0.54	10000		0.20	20A 20B)
Right of engine centerline	0.32			0.36	0.07(20, 6/C20)
rught of englie centennie	0.52	-2203000	36990	0.50	0.08(20A 20B)
					0.00(2011, 200)
	PT6A-2125.	PT6A-25C	PT6A-15AG	PT6A-29	PT6A-3434AG.
	-254		-2728		-34B.
					-36
REDUCTION GEAR RATIO	0668.1	0663.1			
	0.0000000	12.22.20.20.20.20.20			
RATINGS					
Maximum continuous at sea level					
Equivalent shaft hp.	580	783	715	778	783
Shaft hp.	550	750	680	750	
Jet thrust, lb.	75	82	90	71	82
Output rpm	2,200				
Gas generator rpm	38,100				
Takeoff (5 min.) at sea level	42.22.20	10-00000	12-12 II	23605004	
Equivalent shaft hp	580	783	715	778	783
Shaft hp.	550	750	680	750	5 - 1 - 1
Jet thrust, lb.	75	82	90	71	82
Output rpm	2,200				
Gas generator rpm	38,100				
Maximum reverse					
Shaft hp	500	720	620	750	720
Output rpm (max)	2,100				
0 10 10 0					
Output Shaft	Flanged		-1-		
	4.250" B.C., 8				
	notes .594 ±				
	diameter (9				
	Dewc				
	Installation				
	Drawing				
FIF	See NOTE 9	12121			
OIL	See NOTE 9				
0111	500 HOTE 9	9 13 (899)	100	()	1. Carlo 1996

I. MODELS (Cont.)	PT6A-21,	PT6A-25C	PT6A-15AG,	PT6A-29	PT6A-34,
	-25, -25A		-27, -28		-34AG, -34B, -36
OIL TANK CAPACITY, gal	2.8(-25, -25A)		2.3		
USABLE OIL TANK CAPACITY, gal.	1.5				
USABLE OIL WHEN INVERTED, gal.	.25(-25, -25A)				
PRINCIPAL DIMENSIONS, in.	61 89((62 91 -	62.91	61 89		
Nominal diameter	25,-25A)	23.00	18 29	1005.0	1212
Movimum radius	25, -25A)	16.00	11.50		
(excluding exhaust ports)	25, -25A)	10.00	11.50		
WEIGHT (DRY) (includes basic engine, fuel	337 (-21) 362 (-25)	355	337		340 (353 -34B)
and ignition systems but ex- cludes propeller governor (-6, -20,	352 (-25A)				
and PT6D-114A models only) and					
CENTER OF GRAVITY					
(dry weight) (in.)					
Forward of mount plane	3.04(-21) 3.00(-25, -25A)	3.00	3.04		(3.38 -34B)
Aft of forward mount plane					
Below engine centerline	0.32(-21) 0.47(-25, -25A)	0.47	0.32		(0.37 -34B)
Right of engine centerline	0.20(-21)	0.29	0.20	212	(0.38 -34B)
	0.29(-25, -25A)				
	PT6A-110	PT6A-112	PT6A-114	PT6A-114A	PT6A-116
	0576.1				2002000000000 burning
RATINGS	.0370.1				
Maximum continuous at sea level					
Equivalent shaft hp Shaft hp	502 475	528 500	632 600	725 675	736 700
Jet thrust, lb.	68	70	79	124	89
Output rpm	1,900	5-0-0 2010/10	- 1-	- 1-	1-1-1
Takeoff (5 min.) at sea level	36,100	15.5			
Equivalent shaft hp	502	528	632	725	736
Shaft hp. Jet thrust 1b	4/5	500 70	600 70	675	700 80
Output rpm	1,900				
Gas generator rpm	38,100				1

I. MODELS (cont.)	PT6A-110	PT6A-112	PT6A-114	PT6A-114A	PT6A-116
Maximum reverse					
Shaft hp.	455	475	600	675	672
Output rpm (max)	1,825			-	
Output Shaft	Flanged		H.H		
	holes .594+				
	.005: diameter				
	(See PWC				
	Installation				
	Drawing				
I FUEL	See NOTE 8			-	-
OIL	See NOTE 9	-	-	3	
OIL TANK CAPACITY, gal.	2.3			10.0	
USABLE OIL TANK CAPACITY, gal.	1.5	<u>1997</u>	212	22	
PRINCIPAL DIMENSIONS, in.					
Length, in.	61.89		61.89		
Nominal diameter	18.29		18.29		18.06
Maximum radius	11.50		11.73		11.50
(excluding exhaust ports)					
WEIGHT (DRY)	343		359	360	348
(includes basic engine, fuel					
and ignition systems but ex-					
cludes propeller governor (-6, -20,					
and P16D-114A models only) and					
CENTED OF CDAVITY			-		
(dry weight) (in)					
(ury weight) (iii.)					
Forward of mount plane	3.80		3.88	12121	3.87
<u>^</u>					
Aft of forward mount plane					
Below engine centerline	0.26				0.25
Right of engine centerline	0.34		0.38		0.35
	PT6A-121	PT6A-135,- 135A	PT6D-114A	PT6A-35	PT6A-140
REDUCTION GEAR RATIO	.0576:1		.1875	.0663:1	.0582:1
RATINGS					
1000 000 00 000 000 000 0000					
Maximum continuous at sea level					
Equivalent shaft hp.	647	787	729	787	912
Shaft hp.	615	750	680	750	867
Jet thrust, lb.	80	93	124	93	119
Output rpm	1,900		6,188	2,190	1900
Gas generator rpm	38,100		38,100	12121	38830
rakeon (5 mm.) at sea revel	647	707	720	707	012
Equivatent shart np.	615	750	680	750	912
Jet throat 1b	80	93	12/	92	110
Output rom	1 900		6 188	2 190	1900
Gas generator rom	38,100				38850
r					

I. MODELS (cont.)	PT6A-121	PT6A-135, -135A	PT6D-114A	PT6A-35	PT6A-140
Maximum reverse Shaft hp. Output rpm (max)	591 1,825	720	680 5,940	720 2,100	867 1825
Output Shaft	Flanged 4.250" B.C., 8 holes .594 <u>+</u> .005" diameter (See PWC Installation Drawing		-		
I FUEL	See NOTE 8				
OIL	See NOTE 9		(*)*)		
OIL TANK CAPACITY, gal.	2.3		2-11-12		2.36
USABLE OIL TANK CAPACITY, gal.	1.5		100000		.98
PRINCIPAL DIMENSIONS, in. Length Nominal diameter Maximum radius (excluding exhaust ports) WEIGHT (DRY) (includes basic engine, fuel and ignition systems but excludes propeller governor (-6, -20 and PT6D-114A models only) and	61.89 18.29 11.50 343	347	52.8 18.29 11.73 297	61.89 334	64.14 18.92 14.32 416.7
CENTER OF GRAVITY (dry weight) (in.)					
Forward of mount plane	3.8	3.87	0.19	3.87	4.27
Aft of forward mount plane					
Below engine centerline	0.26	0.25	0.31	0.25	0.47
Right of engine centerline	0.34	0.35	0.25	0.35	0.36

I. MODELS (cont.)	PT6A-140AG	PT6A-140A
REDUCTION GEAR RATIO	.0582:1	.0582:1
RATINGS		
3.6		
Maximum continuous at sea level	011	011
Equivalent shalt np.	911	911
Jat thrust 1b	007 117	117
Output rom	1900	1900
Gas generator rom	38850	38850
Takeoff (5 min.) at sea level	50050	50050
Equivalent shaft hp.	911	911
Shaft hp.	867	867
Jet thrust, lb.	117	117
Output rpm	1900	1900
Gas generator rpm	38850	38850
Maximum reverse		
Shaft hp.	867	867
Output rpm (max)	1825	1825
1 - 1 - C		0.00.000
Output Shaft	Flanged 4.250"	
	B.C., 8 holes .594	
	\pm .005" diameter	
	(See PWC	
	Installation	
	Drawing	
FUEL	See NOTE 8	
OIL	See NOTE 9	
OIL TANK CAPACITY, gal.	2.36	
USABLE OIL TANK CAPACITY,	.98	22
gal.		
PRINCIPAL DIMENSIONS, in.		
Length	64.14	
Nominal diameter	18.62	
Maximum radius	11.40	
WEIGHT (DBV)	295	
(includes basic engine fuel and	365	05050
ignition systems but evolutes		
propeller governor (-6, -20, and		
PT6D-114A models only) and		
ignition power source)		
CENTER OF GRAVITY		
(dry weight) (in.)		
Forward of mount plane	4.47	
1 of ward of mount plane	4.47	
Aft of forward mount plane	.33	**
Below engine centerline	.26	
	1	

ICDS E4EA					PAGE 8
II. MODELS	PT6A-38	PT6A-40	PT6A-41, -41AG, -42 -42A	PT6A-45	PT6A-45A, -45B
REDUCTION GEAR RATIO	.0663:1			.0568:1	
RATINGS					
Maximum continuous at sea level Equivalent shaft hp. Shaft hp. Jet thrust, lb. Output rpm Gas generator rpm Takeoff (5 min.) at sea level Equivalent shaft hp. Shaft hp. Jet thrust, lb. Output rpm Gas generator rpm Maximum reverse Shaft hp.	801 750 127 2,000 38,100 801 750 127 2,000 38,100 700	749 700 122 39,000 749 700 122 39,000	903 850 134 38,100 903 850 134 38,100 800	1,070 1,020 127 1,700 38,100 1,174 1,120 136 1,700 38,100 900	
Output Shaft	Flanged 4.250" B.C., 8 holes .594 <u>+</u> .005" diameter (See PWC Installation				
FILEIS	Soo NOTE 8				
OIL	See NOTE 9	17.7			
OIL TANK CARACITY col	25				
USABLE OIL TANK CAPACITY, gal.	1.5				
PRINCIPAL DIMENSIONS, in. Length Nominal diameter Maximum radius (excluding exhaust ports)	66.47 18.29 12.84			72.62	
WEIGHT (DRY) (includes basic engine, fuel and ignition systems but ex- cludes propeller governor (-6, -20 and PT6D-114A models only) and ignition power source) CENTER OF GRAVITY	405	419		445	
(dry weight)(in.)	2.49			5 38	5 38
Aft of forward mount plane					
Below engine centerline	0.32			0.12	0.12
Right of engine centerline	0.19			0.27	0.27

TODS	E4EA
1000	

		PAGE 9
_	PT6A-61,	PT6A-60
	-61A	

II. MODELS (cont.)	PT6A-45R	PT6A-50	PT6A-60, -60A	PT6A-61, -61A	PT6A-60AG	PT6A-52
REDUCTION GEAR RATIO	.0568:1	.0438:1	.0568:1	.0663:1		.0663:1
RATINGS						(
Maximum continuous at sea level						
Equivalent shaft hp.	1,070	1,022	1,113	902	1,081	898
Shaft hp.	1,020	973	1,050	850	1,020	850
Jet thrust, 1b.	127	124	157	132	154	120
Output rpm	1,700	1,210	1,700	2,000	1,700	2000
Gas generator rpm	39,000	38,100	39,000			
Takeoff (5 min.) at sea level						
Equivalent shaft hp.	1,254	1,174	1,113	902	1,113	898
Shaft hp.	1,197	1,120	1,050	850	1,050	850
Jet thrust, 1b.	141	136	157	132	157	120
Output rpm	1,700	1,210	1,700	2,000	1,700	2000
Gas generator rpm	39,000	38,500	39,000	2.2		1000
Maximum reverse						
Shaft hp.	900	1,120	900	800	900	800
Output rpm (max)	1,650	1,210	1,650	1,900	1,650	1900
Output Shaft	Flanged 4.250"	Flanged 5.125"	Flanged 4.250"			Flanged 4.250"
203A	B.C., 8 holes	B.C., 8 holes	B.C., 8 holes			B.C., 8 holes
	.594 <u>+</u> .005"	.594 <u>+</u> .005"	.594 <u>+</u> .005"			.594 <u>+</u> .005"
	diameter (See	diameter (See	diameter (See			diameter (See
	PWC	PWC	PWC			PWC
	Installation	Installation	Installation			Installation
	Drawing	Drawing)	Drawing)			Drawing)
FUEL	See NOTE 8		A.D.	R (R)	nia.	7.5
OIL	See NOTE 9					-12
OIL TANK CAPACITY, gal.	2.5	3.0	2.5			
USABLE OIL TANK CAPACITY,	1.5	1.0	1.5	2 48 2 8	Profest	705
gal.						
PRINCIPAL DIMENSIONS, in.						
Length	72.62	79.89	72.09	66.76	72.09	66.76
Nominal diameter	18.29		18.29	1000 March 1000		
Maximum radius	12.84	15.44	12.84			
(excluding exhaust ports)	SCHWARTING AN	tootormar in	000 AVE 10			
WEIGHT (DRY)	459	622	487	443	489	449
(includes basic engine, fuel		0.000	00000	100401	11104	1212447
and ignition systems but ex-						
cludes propeller governor (-6, -20,						
and PT6D-114A models only) and						
and the second s						

ICDS -	F4FA

II. MODELS (cont.)	PT6A-45R	PT6A-50	PT6A-60, -60A	PT6A-61, -61A	PT6A-60AG	PT6A-52
CENTER OF GRAVITY						
(dry weight) (in.)						101 21
Forward of mount plane	5.38		5.22	2.630	5.22	2.51
Aft of forward mount plane		See NOTE 17				
Below engine centerline	0.12	See NOTE 17	.300			.260
Right of engine centerline	0.27	See NOTE 17	.28	.29	.28	.330
and a set of the state and states to a set of the states o						-
III. MODELS	PT6A-65B	PT6A-65F	R PT6A-65AI	R PT6A-65AG]
REDUCTION GEAR RATIO	.0568:1			14143	1	1
RATINGS						1
Manimum and income days local						
Equivalent shaft hp	1 249		1 208			
Shaft hn	1,249		1,220			
Jet thrust, lb.	189		194			
Output rpm	1,700					
Gas generator rpm	39,000		1918			
Takeoff (5 min.) at sea level	150					
Equivalent shaft hp.	1,249	1,459	1,509	1,381		
Shaft hp.	1,173	1,376	1,424	1,300		
Jet thrust, lb.	189	209	214	202		
Output rpm	1,700	88	HE			
Gas generator rpm	39,000					
Alternative takeoff						
(5 min. at sea level)						
Equivalent shaft hp.		1,308				
Shaft hp.		1,230				
Jet thrust, lb.	:	195				
Output rpm		1,700				
Gas generator rpm		39,000				
Maximum reverse						
Shaft hp.	900			1-1-1		
Output rpm (max)	1,650			1-1-1		
Output Shaft	Flanged 4.250"			(-		
	B.C., 8 holes .594	8				
	$\pm .005"$ diameter					
	(See PWC					
	Installation					
	Drawing)			100.007	7	4
I FUEL	See NOTE 8					4
OIL	See NOTE 9					4
OIL TANK CAPACITY, gal.	2.5					4
USABLE OIL TANK CAPACITY,	1.5					
ga. DDINCIDAL DIMENSIONS :						4
FRINCIPAL DIMENSIONS, III.	74.70					
Nominal diameter	18 20					
Maximum radiue	12.23					
IviaAinum rautus	12.04		100	1000	5 .	1

III. MODELS (cont.)	PT6A-65B	PT6A-65R	PT6A-65AR	PT6A-65AG	
WEIGHT (DRY)	495	496	501		
(includes basic engine, fuel					
and ignition systems but excludes					
propeller governor (-6,-20, and					
PI6D-114A models only) and					
ignition power source)					
CENTER OF GRAVITY					
(dry weight) (in.)					
Present of the second states	2.75				
Forward of mount plane	5./5				
Aft of forward mount plane					
Art of forward mount plane					
Below engine centerline	.29				
				1.00.00	
Right of engine centerline	.17	212	22	12720	
IV. MODELS	PT6B-9	PT6B-35F		1	
REDUCTION GEAR RATIO	.1889:1	.1875:1			
RATINGS		.10/011			
Maximum continuous at sea level					
Equivalent shaft hp.	1222	684			
Shaft hp.	500	650			
Jet thrust, lb.	124				
Output rpm	6,230	6,188			
Gas generator rpm	38,100				
Takeoff (5 min.) at sea level					
Equivalent shaft hp.		684			
Shaft hp.	550	650			
Jet thrust, lb.	136				
Output rpm	6,230	6,188			
Gas generator rpm	38,100	2202			
a.e. 1				-	
Maximum reverse					
Snan np.					
Output rpm (max)	 CAE A C41 041				-
OUTPUT SHAFT	SAE Aero Sta. 84a	So teeth,	1.5 III. P.D.		
I FIIFI	See NOTE 8				
OIL	See NOTE 9	222		-	2
OIL TANK CAPACITY col	23			-	
USABLE OU TANK CAPACITY	1.5			-	
asl	1.3				
PRINCIPAL DIMENSIONS in					
Length	58.68				
Nominal diameter	18.06				
Maximum radius	10.85	12.6			
(excluding exhaust ports)	10000000000	and the			
WEIGHT (DRY)	255	305	İ		
(includes basic engine, fuel	0.00				
and ignition systems but ex-					
cludes propeller governor (-6,-20,					
and PT6A-114A models only) and					
ignition power source)					

TCDS E4EA						PAGE 12
IV. MODELS (cont.)		PT6B-9	PT6B-35F			
CENTER OF GRAVITY (dry weight) (in)						
Forward of mount plane						
Aft of forward mount plane		22.08	23.56 RH/23.3 LH*			
Below engine centerline		0.13	.52 RH/.63 LH			
Right of engine centerline		0.52	.16 RH/.15 LH			
CERTIFICATION BASIS	Applic Serial	able to the following e numbers shown below	ngines and serial m which were certifie	umbers: FAR 21. ed under FAR 21.	29, CAR 13. (Ex 21, FAR 33-5 NC	ccept DTE 19)
					DATE TYPE C	CERTIFICATE
MODEL	<u>S/N</u>		DATE OF APPI	<u>JCATION</u>	NO. E4EA ISS	UED/REVISED
PT6A-6	All		June 4, 1962		December 31, 19	963
PT6A-6A	All		April 6, 1965		May 28, 1965	
PT6A-6B	All		November 30, 19	967	December 20, 19	967
PT6B-9	All		June 4, 1962		May 28, 1965	
PT6A-11	All		August 19, 1977		September 16, 19	977
PT6A-11AG	All		January 10, 1979)	May 17, 1979	
PT6A-15AG	All		January 9, 1978		January 27, 1978	3
PT6A-20	All		April 9, 1965		October 29, 1965	5
PT6A-20A	All exc	cept 024103-024160	February 19, 197	73	March 9, 1973	
PT6A-20B	All		August 20, 1973		October 2, 1973	
PT6A-6/C20	All		February 19, 19	73	March 9, 1973	
P16A-21	All		December 2, 19	/4	December 10, 19	3/4
	058042 058049 058059 058068 058077 058089	2-058047 9-058055 9-058064 3-058073 7-058084 9-058204				
PT6A-25A	All		December 13, 19	976	December 28, 19	976
PT6A-25C	All		March 5, 1990		June 8, 1990	
P16A-27	All exc 040883 040899 040922 040922 040932 040944 040982 040992 041002 041001 041012 041027 04103 041060 041060 041061 041061 041152 041166 041180 041180	sept 0448/8-0408/9 s-040884 t-040895 s-040921 s-040934 s-040943 s-040949 2-040949 2-040988 s-040999 s-041007 s-041021 r-041032 5 t-041021 r-041033 s-041063 r-041098 s-041106 s-041110 s-041146 2-041156 2-041175 s-041201	November 15, 19	966	December 20, 15	167
PT6A-28	All exc 050929	cept 050676-050925 8-050934	January 27, 1969)	March 11, 1969	

TCDS E4EA			PAGE 13
	A 11	October 6, 1967	October 28, 1968
DTCA 20	All excent 056071-056075	April 29, 1971	November 11, 1971
PT6A 34	056080-056081	A SPORT TO A CALL	
1 10/4-54	056086-056090		
	056098-056107		
	054011, 054012 only	July 20, 1976	August 4, 1976
PT64-34B	prior to 054007	,	2
11011540	All	February 3, 1977	February 14, 1977
PT6A-34AG	A11	October 24, 2001	May 29, 2002
PT6A-35	All	August 10, 1979	March 26, 1982
PT6B-35F	A11	December 13, 1973	December 13, 1973
PT6A-36			
PT6A-38	079156, 079157 only	May 12, 1975	May 30, 1975
	prior to 079153		5.57 3 5.57 5.57
PT6A-40	All	April 19, 1983	July 13, 1983
PT6A-41	All	August 30, 1973	October 2, 1973
PT6A-41AG	All	December 21, 1978	May 17, 1979
PT6A-42	A11	July 11, 1979	October 12, 1979
PT6A-42A	A11	September 21, 1998	December 4, 1998
PT6A-45	A11	May 12, 1975	May 30, 1975
PT6A-45A	A11	March 25, 1976	April 22, 1976
PT6A-45B	A11	March 2, 1979	March 29, 1979
PT6A-45R	A11	June 25, 1980	August 1, 1980
PT6A-50	All	September 21, 1976	October 22, 1976
PT6A-60	All	April 20, 1982	March 15, 1983
PT6A-60A	All	April 19, 1983	November 7, 1983
PT6A-60AG	All	October 1, 1996	October 10, 1996
PT6A-61	All	April 20, 1982	March 15, 1983
PT6A-61A	A11	January 6, 1984	May 1, 1985
PT6A-65B	All	April 20, 1982	September 17, 1982
PT6A-65R	A11	April 20, 1982	September 17, 1982
PT6A-65AR	All	January 6, 1984	May 1, 1985
PT6A-65AG	A11	July 23, 1987	August 19, 1987
PT6A-110	A11	August 8, 1980	February 15, 1981
PT6A-112	All	October 12, 1978	October 30, 1978
PT6A-114	All	December 21, 1982	May 21, 1984
PT6A-114A	All	October 4, 1989	March 19, 1990
PT6A-116	All	October 4, 1984	May 1, 1985
PT6A-121	All	April 12, 1982	August 3, 1982
P16A-135	All	September 9, 1977	September 12, 19/7
PT6A-135A	All	February 3, 1982	April 29, 1982
P16D-114A	All	October 30, 1996	September 22, 1997
P16A-52	All	May 26, 2006	May 31, 2007

Certification Basis :

14 CFR Part 33, effective February 1, 1965, including Amendments 33-1 through 33-20. The following models comply with 14 CFR Part 34, amendment 5a, effective October 23, 2013. See Note 23 for detailed summary of the certification basis for fuel venting and exhaust emissions.

MODEL	S/N	DATE OF APPLICATION	DATE OF TYPE CERTIFICATE
PT6A-140	ALL	March 9, 2011	December 17, 2012
PT6A-140AG	ALL	May 15, 2014	October 1, 2015
PT6A-140A	ALL	May 15, 2014	October 1, 2015

IMPORT REQUIREMENTS:

PAGE 14

TCDS E4EA

To be considered eligible for installation on U.S. registered aircraft, each engine to be exported to the United States shall be accompanied by a Certificate of Airworthiness for export or certifying statement endorsed by the exporting cognizant civil airworthiness authority which contains the following language:

- This engine conforms to its United States type design (Type Certificate Number E4EA) and is in a condition for safe operation
- (2) This engine has been subjected by the manufacturer to a final operational check and is in a proper state of airworthiness.

Reference FAR Section 21.500, which provides for the airworthiness acceptance of aircraft engines or propellers manufactured outside of the U.S. for which a U.S. type certificate has been issued.

Additional guidance is contained in FAA Advisory Circular 21.23, Airworthiness Certification of Civil Aircraft, Engines, Propellers and Related Products, Imported into the United States.

NOTES					
NOTE 1.	Maximum permissible temperature	? <u>S:</u>			
	PT6A-20, -20A, -20B, -6/C20				
	PT6A-6, -6A, -6B, PT6A-28, -29	PT6B-9	PT6A-11, -11AG		
	Measured Rated Turbine	Measured Rated Inter-Turbine			
	Temperature as Indicated by the	Temperature as Indicated by the	9		
	Average of 24 Gas Temp.	Average of 8 or 10 Gas Temp.			
	Thermocouples	Thermocouples			
Takeoff	1821°F (994°C)	1382°F (750°C)	1292°F (700°C)		
	1382°F(750°C)				
	(PT6A-20,-20A,-20B,-6/C20)				
Maximum Continuous	1745°F (952°C)	1382°F (750°C)	1292°F (700°C)		
	1382°F(750°C)	1319°F (715°C) (PT6B)			
	(PT6A-20,-20A,-20B,-6/C20)				
Starting Transient	1900°F (1038°C)	1994°F (1090°C)	88		
(2 sec.)	1994°F(1090°C)	0. 550			
	(PT6A-20,-20A,-20B,-6/C20)				
	PT6A-21	PT6A-25, -25A	PT6A-15AG, -27, -112, -121		
	Measured Rated Inter-Turbine				
	Temperature as Indicated by the				
	Average of 8 or 10 Gas Temp.				
	Thermocouples				
Takeoff	1283°F (695°C)	1283°F (695°C)	1336°F (725°C)		
Maximum Continuous	1283°F (695°C)	1283°F (695°C)	1336°F (725°C)		
Starting Transient	1994°F (1090°C)		1994°F (1090°C)		
(2 sec.)			9056.0		
	PT6A-34, -34B, -34AG, -25C	PT6A-35,-36,-114,-114A,-	PT6A-110		
		116,-135,-135A,-PT6B-			
		35F,PT6D-114A			
	Measured Rated Inter-Turbine	Measured Rated Inter-			
	Temperature as Indicated by the	Turbine Temperature as			
	Average 8 or 10 Gas Temp.	Indicated by the Average of			
	Thermocouples	8 Gas Temp. Thermocouples			

NOTE 1.(continued)

TCDS E4EA PAGE 15 Takeoff 1454°F (790°C) 1481°F (805°C) 1265°F (685°C) 1265°F (685°C) Maximum Continuous 1454°F (790°C) 1481°F (805°C) Starting Transient 1994°F (1090°C) ----------(2 sec.) PT6A-42, -42A, PT6A-38 PT6A-41, -41AG PT6A-45 -45A,-45B, -50, -40 Measured Rated Inter-- -- -Turbine Temperature as (8 or 10) Indicated by the Average of 8 Gas Temp. Thermocouples Takeoff 1301°F (705°C) 1382°F (750°C) 1400°F (760°C) 1472°F (800°C) Maximum Continuous 1301°F (705°C) 1382°F (750°C) 1400°F (760°C) $1472^{\circ}F(800^{\circ}C)$ Starting Transient 1832°F (1000°C) - -- -- -(5 sec.) Alternate Takeoff -------------------PT6A-45R PT6A-60 PT6A-61 PT6A-60A, -61A, -60AG, -52 Measured Rated Inter-Measured Rated ---2.2 Turbine Temperature as Inter-Turbine Indicated by the Average of 8 Temperature as Gas Temp. Thermocouples Indicated by the Average of 8 or 10 Gas Temp. Thermocouples Takeoff 1553°F (845°C) 1472°F (800°C) 1508°F(820°C) -1472°F (800°C) 1508°F (820°C) Maximum Continuous 1494°F (812°C) - -1472°F(775°C)(-60AG) Starting Transient (5 1832°F (1000°C) - -- -- sec.) Alternate Takeoff 1472°F (800°C)

	PT6A-65B	PT6A-65R	PT6A-65AR	PT6A-65AG
	Measured Rated Inter-			
	Turbine Temperature as			
	Indicated by the Average of			
	8 or 10 Gas Temp.			
	Thermocouples			
Takeoff	1508°F(820°C)	1553°F(845°C)	1571°F (855°C)	1508°F (820°C)
Maximum Continuous	1490°F (810°C)	1539°F (835°C)	1544°F (840°C)	1508°F (820°C)
Starting Transient	1832°F (1000°C)			
Alternate Takeoff		1490°F (810°C)	1508°F (820°C)	

PAGE 16

NOTE 1.(continued)				
12 23	PT6A-140	PT6A-140AG	PT6A-140A	
	Measured Rated Inter-	Measured Rated Inter-	Measured Rated Inter-	
	Turbine Temperature as	Turbine Temperature	Turbine Temperature	
	Indicated by the	as Indicated by the	as Indicated by the	
	Average of 8 Gas	Average of 8 Gas	Average of 8 Gas	
	Temp. Thermocouples	Temp.	Temp.	
		Thermocouples	Thermocouples	
Takeoff	1562 °F (850 °C)	1598 °F (870 °C)		
Maximum Continuous	1517 °F (825 °C)			
Starting Transient	1994 °F (1090 °C)	10 7 1771	語の語を	
Alternate Takeoff				

All except PT6A-40,-41,-42,-42A,-45,-45A,-45B,-45R,-60, -60A,-60AG,-61,-61A,-65AG,-65AR,-65B, -65R, -140, -140AG and -140A models, Oil Temperature Continuous minus 40°F (-40°C) to 210°F (99°C) except for MIL-L-7808 (where approved; See NOTE 9) for which the maximum allowable temperature is 185°F (85°C). Limited periods of 10 minutes of 220°F (104°C) are allowable, except on A-25, A-25A, A-25C, A-11 and A-11AG (5 minute maximum), and A-50 (15 minutes maximum).

PT6A-40,-41,-42,-42A, and -61A, Oil Temperature Continuous minus 40°F(-40°C) to 220°F(104°C). Maximum ground operation 230°F(110°C).

PT6A-45,-45B,-45B,-45B,-52, -60,-60A,-60AG, -61, -65AG,-65AR,-65B,-65R, Oil Temperature Continuous minus 40°F(-40°C) to 230°F(110°C).

PT6A-140, -140AG, and -140A, Oil temperature continuous at idle minus 40°F(-40°C) to 210°F (99°C). Oil temperature continuous at Take off and Max continuous 90 °F (32 °C) to 210°F (99°C). Limited periods of 10 minutes of 220°F (104°C) are allowable

Fuel temperature maximum fuel pump inlet of $135^{\circ}F(57^{\circ}C)$. Fuel temperature minimum fuel pump inlet of minus $65^{\circ}F(-54^{\circ}C)$ or 12 centistokes. See the specific installation manuals for additional details.

NOTE 2. Fuel and Oil Pressure Limits:

Fuel: Minimum pressure at inlet to the engine fuel system shall not be less than 5 p.s.i. above true vapor pressure of the fuel. For emergency operation, with airframe boost pump inoperative, it must be such that vapor liquid ratio does not exceed 0.1 for continuous operation and does not exceed 0.3 for more than 10 hours in a pump overhaul life. PT6A-140 refer to the installation manual

 Oil:
 Operating range:

 PT6A-6, -6A, -6B, -20, -20A, -20B, -6/C20, PT6B-9
 28000 rpm gas generator speed and above:

 Below 28000 rpm gas generator speed:
 Below 28000 rpm gas generator speed:

65-85 p.s.i.g., 80 p.s.i.g. (max. B-9) 40 p.s.i.g. (min.)

PT6A-11, -11AG, -15AG, -21, -27, -28, -29, -50, -110, -112, -121 27000 rpm gas generator speed and above, with an oil temperature of 140-158°F: Below 27000 rpm gas generator speed:

80-100 p.s.i.g. 40 p.s.i.g. (min) 60 p.s.i.g. (-50)

PT6A-25, -25A, -25C

27000 rpm gas generator speed and above, with an oil temperature of 140-160°F: Below 27000 rpm gas generator speed:

65-85 p.s.i.g. 75-95 p.s.i.g. (A-25C) 40 p.s.i.g. (min)

	PAGE 17
Oil: Operating range: PT6A-34, -34B, -34AG, -35, -135, -135A, -36, -114, -116A, -116A, -116B-35F, PT6D-114A, PT6A-140, -140AG, -14	85-105 psig 75-100 psig (B-35F)
of 140-158°F:	85-120 p.s.i.g. (A-140, A-140AG, A- 140A)
Below 27000 rpm gas generator speed:	40 p.s.i.g. (min)
PT6A-38, -40, -41, -41AG, -42, -42A 27000 rpm gas generator speed and above, with an oil temperature of 140-160°F:	85-135 p.s.i.g. (PT6A-38) 105-135 p.s.i.g. (PT6A-41, -41AG) 100-135 p.s.i.g. (PT6A-40, 42, 42)
Below 27000 rpm gas generator speed:	60 p.s.i.g. (min)
PT6A-45, -45A, -45B, -45R, -52, -60, -61, -65B, -65R, -60A, -	
27000 rpm gas generator speed and above, with an oil temperature of $140-160^{\circ}$ F	90-135 p.s.i.g.
Below 27000 rpm gas generator speed:	60 p.s.i.g. (min)
	Oil: Operating range: PT6A-34, -34B, -34AG, -35, -135, -135A, -36, -114, -114A, -116, PT6B-35F, PT6D-114A, PT6A-140, -140AG, -140A 27000 rpm gas generator speed and above, with an oil temperature of 140-158°F: Below 27000 rpm gas generator speed: PT6A-38, -40, -41, -41AG, -42, -42A 27000 rpm gas generator speed and above, with an oil temperature of 140-160°F: Below 27000 rpm gas generator speed: PT6A-45, -45A, -45B, -45R, -52, -60, -61, -65B, -65R, -60A, - 60AG, -61A, -65AR, -65AG 27000 rpm gas generator speed and above, with an oil temperature of 140-160°F: Below 27000 rpm gas generator speed:

NOTE 3. The engine ratings are based on static sea level condition 29.92 in Hg pressure, compressor intake screen installed, no external accessory loads and no airbleed. These ratings are available up to the following compressor inlet air (dry) temperatures.

	Maximum			Maximum	
	Continuous	Takeoff		Continuous	Takeoff
РТ6А-6, -6А, -	64°F	$70^{\circ}\mathrm{F}$	PT6A-45R	92°F	73, 52(1)°F
6B					
PT6A-20, -20A,	70	70	PT6A-50	90	59, 93(2)
-20B, -6/C20					
РТ6А-11, -	108	108	PT6A-60, -60A	77	77
PT6A-11AG	90	90			
PT6A-21	91	91	PT6A-60AG	63	79
PT6A-25, -25A	93	93	PT6A-61, -61A	115	115
PT6A-25C	87	87			
PT6A-15AG, -	71	71	PT6A-65B	101	101
27					
PT6A-28	70	70	PT6A-65R	101	82, 76(1)
PT6A-29	73	73	PT6A-65AR	101	82, 84(1)
PT6A-34, -34B,	86	86	PT6A-65AG	101	71
-34AG					
PT6A-35,-135A	93	93			
PT6A-36	97	97	PT6A-110	101	101
PT6A-38	102	102	PT6A-112	133	133
PT6A-40	135	135	PT6A-114	136	136
PT6A-41, -	106(86, -42A)	106	PT6A-114A	115	115
41AG, -42, -					
42A					

ł

TCDS E4EA					PAGE 18
NOTE 3.					
(Cont.)					
	Maximum	Takeoff		Maximum	
	Continuous			Continuous	Takeoff
PT6A-45	79	59	PT6A-116	105	105
PT6A-45A	79	46	PT6A-121	91	91
PT6A-45B	84	52	PT6A-135	85	85
			PT6B-9	72	77
			PT6B-35F	110	110
			PT6D-114A	104	104
			PT6A-52	142	142
			PT6A-140	80	102
			PT6A-140AG	78.8	111.2
			PT6A-140A	80.6	111.2
1 Alterna	ative Takeoff				

2. Takeoff with Augmentation Fluid

NOTE 4.	Accessory Drive Provisions: (All Models except -50)
	The following accessory drive provisions are available and are included in the basic engine weight.

						Maximum
	Driven by Gas	Rotating Facing	Speed Ratio	Ma	aximum Torque	Overhang
	Generator Turbine	Drive Pad	(to Turbine)	Continuous	Static	(in lbs.)
	Tachometer,	CC	0.112	7	100	10
	Accessory					
	Gearbox					
	Starter and/or	С	0.293	170	1600	150 (6, 6A, 6B, 6/C20, 20,
	Generator					20A, 20B, 25, 25A, 25C,
						34B)
						150 or 250 when engine has
						a wet spline starter generator
c -						arrangenment -see
						installation manuals for
						details (11, 11 AG, 15 AG,
						21, 27, 28, 34, 34AG, 36,
						110, 112, 135)
						250 (35 38 40 41 42
						42 4 41 4 G 45 45 4 54 45B
						45R 52 60 60A 60AG 61
						61A, 65B, 65R, 65AR,
						65AG, 114, 114A, 116, B-
						35F, D-114A,121, 135A,
						140,140AG, 140A)
	Vacuum Pump	CC	0.103	60	800	25
			.1019 (-140, -			
			140AG, -140A)			
	Hydraulic Pump	CC	0.203	150	800	25
			.2041 (-140, -			
			140AG, -140A)			

______ PAGE 19

NOTE 4. Cont.)						
Driven by Gas Generator Turbine	Rotating Facing Drive Pad	Speed Ratio (to Turbine)	Maxim	um Torque	Maximum Overhang	
			Continuous	Static	(in 1bs.)	
Aircraft Accessory Drive	Drive Pad	(to Turbine)	135	Overhang	25	
			ĺ		Maximum	
Driven by	Rotating Facing	Speed Ratio	Maxi	mum Torque	Overhang	
Power Turbine	Drive Pad	(to Turbine)	Continuous	Static	(in lbs.)	
Tachometer	C	0.1264(PT6A-15AG,	7	100	10	
(Tachometer and		-25C,-27,-28,-29,-34,-				
overspeed		34B,-34AG,-35,-36,-38,-				
governor for		40,-41,-41AG,-42,-42A,-				
PT6A-6,-6A,-6B		52, -61,-61A)				
and-20 only)		0.1263 (B-35F);				
		0.1273(PT6A-6,-6A,-6B,-				
		11,-11AG,-20,-20A,-				
		20B,-6/C20,-21,-25,-				
		25A,-110,-112				
		114, 114A, -116, 121,-				
		135,-135A);				
		0.1405 (45, 45A, 45B,				
		45R, 60, 60A, 60AG,				
		65B, 65R, 65AR, 65AG)				
		.1286 (-140, -140AG, -				
		140A)				

Driven by Power Turbine	Rotating Facing Drive Pad	Speed Ratio (to Turbine)	Maximu Continuous	m Torque Static	Maximum Overhang (in lbs.)
Propeller Governor and Overspeed Governor*	С	0.1264(PT6A-15AG, -25C,-27,-28,-29,-34,-34B,- 34AG,-35,-36,-38,-40,-41,- 41AG,-42,-42A,-52,-61,-61A) 0.1273(PT6A-6,-6A,-6B,-11,- 11AG,-20,-20A,-20B,-6/C20,- 21,-25,-25A,-110,-112 114, 114A, -116, 121,-135,- 135A); 0.1405(PT6A-45, 45A, 45B, 45R, 60, 60A, 60AG, 65B, 65R, 65AR, 65AG) .1286 (-140, -140AG, -140A)	50	850	25
* May be an optional d	rive, which is not incl	uded in the basic engine weight, is in	icluded.		
The hydraulic pump d	rive requires the airc	raft accessory drive to complete the	e train.		

NOTE 4.

TCDS E4EA

PAGE 20

(Cont.)	
	Cabin pressurization may be provided by the approved combination of the Beech Aircraft Corporation Gearbox No. 50-9903 with the Godfrey Engineering type 9 cabin supercharger, mounted directly on the accessories gearbox.
	PT6A-38,-40,-41,-41AG,-42,-42A are approved for operation with an accessory mounted on the reduction gearbox and belt driven from the propeller assembly provided that the accessory is mounted and driven in accordance with the location dimensions and weight prescribed in Sheet 5 of Drawing Number 3018500, revision dated August 20, 1973.
	C = Clockwise CC = Counterclockwise

Accessory Drive Provisions: (PT6A-50 only)

Driven by Gas	Rotating Facing	Speed Ratio	Maximur	n Torque	Maximum Overhang
Generator Turbine	Drive Pad	(to Turbine)	Continuous	Static	(1n Ibs.)
Tachometer	CC	0.112	7	100	10
Accessory Gearbox					
Starter and/or	C	0.293	170	1600	230
Generator					
Hydraulic Pump*	CC	0.204	150	800	30
Driven by Power Turbine					
Tashamatan	CC	0.1400	7	100	10
Tachometer		0.1400	1	100	10
Alternator	С	0.529	120	1600	105
Prop. Governor	CC	0.1400	100	1700	40
Prop. Overspeed Governor	CC	0.1400	50	850	25

NOTE 5. External airbleed shall not exceed 5.25%, except as specified in specific installation manuals. A maximum of 1.5 lbs. Per minute may be bled during starting. Bleed air meets the requirements of Paragraph 3.18 of MIL-E-5007C.

NOTE 6.

<u>Maximum Allowable Torque:</u> The Maximum allowable steady state and acceleration torque, as measured by the torquemeter, are:

Model	Continuous lb. Ft.	Transient
, <u> </u>		Acceleration lb. Ft.
PT6A-11, 11AG	1194	1500
PT6A-6, 6A, 6B, 20, 20A, 20B, 6/C20, 21	1315	1500
25, 25A		2100
P16A-15AG, 27	1628	2100
PT6A-28	1786	2100
PT6A-29, 34, 34B, 34AG, 35, 36, 25C	1970	2100
PT6A-38	1970	2750
РТ6А-40	2230	2750
PT6A-41, 41AG, 42, 42A	2230	2750

I

TCDS E4EA

NOTE 6.			5100
(Cont.)	PT6A-45, 45A, 45B	3625	5100
	PT6A-45R	3625	5100
	PT6A-50	4860	5900
	PT6A-135, 135A	2080	2400
	PT6B-9	464	
	PT6A-112	1480	1900
	PT6A-110	1313	1700
	PT6A-60, 60A, 60AG	3625	5100
	PT6A-61, 61A	2230	2750
	PT6A-65B	3625	5100
	PT6A-65R	4250 (3800 Alternative Takeoff	5100
	PT6A-114, 114A	1980	2400
	PT6A-121	1710	2200
	PT6B-35F	570	658
	PT6A-65AR	4400(3800 Alternative Takeoff)	5100
	PT6A-116	1940	2400
	PT6A-65AG	3800	5100
	PT6D-114A	610	740
	PT6A-52	2230	2750
	PT6A-140	2500	2625
	PT6A-140AG, -140A	2500	2800

NOTE 7. The maximum output shaft overspeed limit is 110 percent (except 100% for PT6A-38, 41, 41AG, 42 and 42A only) at all ratings and may be employed for sustained periods in emergencies. The normal steady state output shaft operating limit speeds are defined as 2200 rpm (100%) for the PT6A-6, 6A, 6B, 6/C20, 11, 11AG, -15AG, - 20, -20A, -20B, -21, -25, -25A, -25C, -27, -28, -29, -34, -34B, -34AG, -36, 2190 rpm (99.6%) for the PT6A-35, 2000 rpm (90.7%) for the PT6A-38, -40, -41, -41AG, -42, -42A, -52, -61, and -61A, 1700 rpm (100%) for the PT6A-45, -45A, -45B, -45R, -65B, -65R, -60, -60A, -60AG, -65AR, -65AG, 1900 rpm for the -135, 135A, 110, 112, 114, 114A, 121, 116, 140, 140AG, 140A, 1210 rpm (100%) for the PT6A-50, 6230 rpm (100%) for the PT6B-35F and PT6D-114A and is the normal steady state operating limit. The normal steady state operating limit speed rises linearly as power is decreased, reaching a maximum of 105% at idle power for the PT6B-9.

100% gas generator speed is defined as 37,468 rpm. Unlimited and limited gas generator speeds are:

Model	Unlimited Speed, rpm	Limited Speed, rpm	Duration
PT6A-6,-6A,-6B,-11,-11AG,- 20,-20A,-20B,-6/C20,-21,-25,- 25A,-25C,-27,-28,-29,-34,- 34B,-34AG,-36,-38,-41	38,100 (101.7%)	38,500 (102.8%)	10 Sec
PT6A-35,-110,-112,-114,- 114A,-116,-121,-135,- 135A,PT6D-114A	38,100 (101.7%)	38,500 (102.8%)	2 Sec
PT6A-50	38,500 (102.8%)		
PT6A-40,-42,-42A	38,100 (101.7%)	39,000 (104.1%)	10 Sec
PT6A-45,-45A,-45B,-45R,- 52, -60,-60A,-60AG,-61,- 61A,-62,-65B,-65R,-65AR,- 65AG	39,000 (104.1%)		
PT6A-140, -140AG, -140A	38,850 (103.7%)	40,000 (106.8%)	20 Sec

NOTE 8. Fuels conforming to the current P&WC specification CPW 204, CPW46 and CPW381(for AG engines). Refer to the current revision of Service Bulletins or Maintenance manuals as follows for approved fuel types: SB 1244 PT6A-6, 0, 0, 62(20, 20, 20A, 20B, 21, 27, 28, 34, 34B, 36, 114, 114A, 116, SB 12044 SB 12144 PT6A-10, 112, 12, 11 SB 12044 PT6A-13AG, 11A, 11AG SB 13044 PT6A-33A, 14, 42, 42A, 45A, 45B, 45B, SB 13044 PT6A-35, 04A, 61, 65B, 65B, 65AR SB 13044 PT6A-35, 04A, 61, 65B, 65B, 65AR SB 13044 PT6A-36A, 65AG SB 13044 PT6A-35, 04A, 61, 65B, 65B, 65AR SB 13044 PT6A-36A, 65AG SB 13044 PT6A-35, 04A, 61A, 65B, 65B, 65AR SB 13044 PT6A-36A, 65AG SB 13044 PT6A-35, 04A, 61A, 65B, 65B, 65AR SB 13044 PT6A-36A, 65AG Maintenance Manual 3077852 PT6A-140A Maintenance Manual 3077852 PT6A-140A Emergency use of MLL-6.5572, Orades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period n ecceeding 150 hours during any overhaul period. It is not necessary to parge the unused fuel from the system when switching fuel type. NOTE 10. The see engines and searce engines in striptic searce and searce engines and proce-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intuke system conform	TCDS E4EA		PAGE 22				
NOTE 8. Fuels conforming to the current P&WC specification CPW 204, CPW46 and CPW381(for AG engines). Refer to the current revision of Service Dulletins or Maintenance manuals as follows for approved find types: SB 1244 PT6A-6, 60, 60, 80 (C20, 02, 02, 02, 03, 03, 02, 12, 72, 28, 34, 34B, 36, 114, 114A, 116, 135, 135A, 35, 25, 25A, 25C, 140 SB 1244 PT6A-130, 11AG SB 1344 PT6A-340, 11AG SB 1344 PT6A-360, 41, 62B, 65A, 45B, 45R, 45B, 45R, 35B, 3044 SB 1344 PT6A-360, 41, 62B, 65A, 65A SB 1444 PT6A-360, 5AD Maintenance Manual 3077182 PT6A-400, Maintenance Manual 3077182, PT6A-140A Maintenance Manual 3077182 PT6A-400, M3079582 and PT6A-140A MM 3077182. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-40AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines more FFAA requirements for operation in rieng conditions when the inhalte system conforms with the PWC Installation. Manual instruction for inhalt spearation of now and icing particles, when the alternative approved alcohol system is used, flight in visible moistrue is restricted as spec							
Note Interpretation Interpretation The second of Service Bulletine or Maintennice manuals as follows for approved field type: Step 1244 PT6A-5.6.0, e8, 6C20, 20, 20A, 20B, 21, 27, 28, 34, 34B, 36, 114, 114A, 116, 35B, 12044 Step 1244 PT6A-15AG, 112, 121, 11 Step 1244 PT6A-15AG, 11AO Step 1244 PT6A-35AG, 11AO Step 1244 PT6A-35AG, 11A2, 42A, 45A, 45B, 45R, 35B, 1504 Step 13244 PT6A-36A, 114, 42, 42A, 45A, 45B, 45R, 35B, 1504 Step 13244 PT6A-60AG, 56AG Step 13244 PT6A-60AG, 56AG Step 13244 PT6A-60AG, 56AG Maintenance Manual 3077152 PT6A-140AG Maintenance Manual 3077152 PT6A-140AG Maintenance Manual 3077152 PT6A-140AG Maintenance Manual 3077152 PT6A-140AG Maintenance Manual 3077152 PT6A-140AG Maintenance Manual 3077152 NOTE 9. The following dis are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1001, 3001, 4001, 3001,	NOTE 8	Fuels conformi	ing to the current P&WC specification CPW 204 CPW46 and CPW381(for AG engines) Refer to				
SB 1244 PT6A-56 6A, 6B, 6C20, 20, 20A, 20B, 21, 27, 28, 54, 34B, 36, 114, 114A, 116, 135, 135A, 35, 25, 25A, 25C, 140 SB 1214 PT6A-15AG, 11AO SB 1214 PT6A-15AG, 11AO SB 1244 PT6A-15AG, 11AO SB 1644 PT6A-15AG, 11AO SB 1644 PT6A-35A, 60A, 6, 55B, 65AR SB 1644 PT6A-35, 60A, 61, 65B, 65B, 65AR SB 1344 PT6A-35, 60A, 61, 65B, 65A, 65B SB 1344 PT6A-35, 60A, 61, 65B, 65AR SB 13244 PT6A-35, 60A, 61, 65B, 65AR SB 13244 PT6A-30 Maintenance Manual 3077182 PT6A-10AC Maintenance Manual 3077182 PT6A-10AC MM 3077182 NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoting. NOTE 11. For erversing application the PT6A-6A and PT6A-20 engin	HOLD OF	the current revi	ision of Service Bulletins or Maintenance manuals as follows for approved fuel types:				
135, 135, 135, 25, 25A, 25C, 140 The structure of the form of the problem of the		SB 1244	PT64-6 6A 6B 6/C20 20 20A 20B 21 27 28 34 34B 36 114 114A 116				
SB 1044 DY 60-110, 112, 121, 11 SB 1214 PY 60-156, 11AG SB 1344 PY 60-134A SB 1044 PY 60-14A SB 1044 PY 60-34AG SB 1044 PY 60-36AG, 11, 62, 63A, 45B, 45R SB 1044 PY 60-46AG, 65AG SB 1044 PY 60-46AG, 65AG SB 1044 PY 60-46AG Maintemance Manual 307982 PY 60-414AG Maintemance Manual 3077182 PY 60-414AG Maintemance Manual 3077182 PY 60-4140A Emergency use of MIL-G-5572, Grades 80/07, 91/98, 100/130 and 115/145 is permitted for a total time period necceeding 150 hours during any overhaul period. It is not necessary to purge the unused field from the system when switching field type. NOTE 9. The following dis are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 1300 list approved foram dois, PY 6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of norw and icing particles, when the alternative approved local system is used. [light in visible mostrue is restricted as specified in the alternative the othor type X210XXX. NOTE 11. For reversing application the PY6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Goverano Type X210XXX. <td></td> <td>135 1354 35</td> <td>25 254 25C 140</td>		135 1354 35	25 254 25C 140				
SB 12144 ITRA-13AG SB 1344 ITRA-13AG SB 1344 ITRA-34AG SB 3044 ITRA-34AG SB 3044 ITRA-34AG SB 13044 ITRA-3AAG SB 13044 ITRA-3AAG SB 12241 ITRA-2AAAAG SB 12241 ITRA-2AAAAAG SB 1244 ITRA-2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		SB 12044	DT6A-110 112 121 11				
abs 1344 PToA.34AC bit 144 PToA.32, 60A, 61, 65B, 65B, 65A bit 1524 PToA.40AC bit 1524 PToA.40AC Maintenance Manual 3077182 <ptoa.140ac< td=""> Maintenance Manual 3077182<ptoa.140ac< td=""> Emergency use of MIL-G-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period n exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following cils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 1601, 3001, 4001, 1201, 1300 hit stapproved brand oils, PToA.140AG MM 3077982 and PToA.140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation for more table meisture is restricted as specified in the PWC Installation. Manual instruction for inertial separation of snow and icing particles, when the alternative approved alcohol system is used. fight in visible moisture is restricted as specified in the PWC Installation. Manual instruction for inertial separation of snow and icing particles when the alternative and not require extremal amoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines</ptoa.140ac<></ptoa.140ac<>		SD 12044 SP 12144	DT6A 15AG 11AG				
SB 164 PT60-1144 SB 1664 PT60-1144 SB 3044 PT6A-38, 41, 42, 42A, 45A, 45B, 45B, 55B, 55A, 55B SB 13044 PT6A-52, 60A, 61, 65B, 65A, 65AB SB 1444 PT6A-50 SB 4044 PT6A-50 Maintenance Manual 3079582 PT6A-140AC Maintenance Manual 3079582 PT6A-140A Emergency use of MIL-G-5572, Grades 80/07, 91/98, 100/130 and 115/145 is permitted for a total time period n exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system. when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intuke system conforms with the PWC Installation Manual instruction for incretial separation of snow and icing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual instruction for incretial separation of snow and icing particles. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics <		SD 12144	PTGA-IJAG, ITAG				
SD 1004 P100-114A SD 3044 PT6A-38, 11, 42, 42A, 45A, 45B, 45B, SD 13044 PT6A-32, 60A, 61, 65B, 65B, 65A SD 13044 PT6A-60, 65AG SB 13244 PT6A-60A, 63 Maintenance Manual 3075B2 PT6A-140A Energency use of MIL-G-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period r exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the initake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used. flight in visible moisture is restricted as specified in the PWC Installation Manual These engines also one acht ang interments for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For eversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controfs approved for each engine model are listed in the ap		SD 1344	PT 0A-34A0				
SB 3044 P16A-32, 0.6, 0.6, 0.6, 0.5B, 0.5AR SB 13044 P16A-52, 0.6, 0.6, 0.6, 0.5AR SB 13244 P16A-60AG, 65AG SB 4044 P16A-50 Maintenance Manual 3079582 P16A-140AG Maintenance Manual 3079582 P16A-140A Emergency use of MIL-G-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period 1 exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when ewitching fuel type. NOTE 9. The following cills are eligible for these engines: PWC P16 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, P16A-140AG MM 3079582 and P16A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation for inertial separation of snow and icing particles, when the alternative approved alcolo system is used, fight in visible moisture is restricted as specified in the PWC Installation Manual instruction for inertial separation of snow and icing particles when the alternative approved alcolo system is used, fight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the P16A-6A and P16A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorpora		SB 1604	P16D-114A				
SB 13044 PT6A-60, 65AG SB 3244 PT6A-60, 65AG Maintenance Manual 3077182 PT6A-10AG Maintenance Manual 3077182 PT6A-140AG Encreqency use of NIL-0-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period r exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate provisions for reversing propeller. PT6A-64 Basic model PT6A-654 Incorporates provisions for reversing propeller.		SB 3044	P16A-38, 41, 42, 42A, 45A, 45B, 45R				
SB 13244 PT6A-50 Maintenance Manual 3079582 PT6A-140A Maintenance Manual 3077182 PT6A-140A Emergency use of MIL-6-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period I exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following cils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13301 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and leing particles, when the alternative approved alcohol system is used, flight in visble moisture is restricted as specified in the PKE Installation. Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and on not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20		SB 13044	PT6A-52, 60A, 61, 65B, 65R, 65AR				
SB 4044 PT6A-50 Maintenance Manual 3077182 PT6A-140AG Emergency use of MLL-G-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period r exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual Instruction for interital separation of snow and icing particles, when the alternative approved lacohol system is used, flight in visible moisture is restricted a specified in the PWC Installation. Manual Instruction for inertial separation of snow and icing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation. Manual Instruction for PGA-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Incorporates provisions for reversing propeller.		SB 13244	PT6A-60AG, 65AG				
Maintenance Manual 3079582 PT6A-140A Maintenance Manual 3079582 PT6A-140A Emergency use of MIL-0-5572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period r exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles when the alternative approved alcolol system is used. flight in visble moisture is restricted as specified in the Ptical stallation. Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and on tor require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Single stage reduction gearing. (Output shaft speed 6,230 rp.m.). PT6A-20 Maximum continnous mring equal to takco		SB 4044	PT6A-50				
Maintenance Manual 3077182 PT6A-140A Emergency use of NIL-05-572, Grades 8007, 91/98, 100/130 and 115/145 is permitted for a total time period r exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and licing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation. Manual These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: PT6A-6 Basic model PT6A-6.0 Incorporates provisions for reversing propeller. PT6A-6.0 Incorporates provisions for reversing propeller. PT6A-6.0 Incorporates provisions for reversing propeller. PT6A-20 Similar to PT6A-20 excc		Maintenance N	Janual 3079582 PT6A-140AG				
Emergency use of MIL-G-5572, Grades 80/07, 91/98, 100/130 and 115/145 is permitted for a total time period n exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following cils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Mamual instruction for inertial separation of snow and icing particles; when the alternative approved dacloh system is used, flight in visible moisture is restricted as specified in the PWC Installation. Mamual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoning. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: PT6A-6 Basic model PT6A-6.0 Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6A-20 Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20 Similar to PT6A-20 except for agricultural aviation. Permissible rotor component lives, overhaul inspec		Maintenance N	Janual 3077182 PT6A-140A				
Emergency use of MIL-6-5572, Grades 80:07, 91/98, 100/130 and 115/145 is permitted for a total time period n exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation of nov and icing particle when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-60 Incorporates provisions for reversing propeller. PT6A-61 Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20							
exceeding 150 hours during any overhaul period. It is not necessary to purge the unused fuel from the system when switching fuel type. NOTE 9. The following eils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand eils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and denot require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: <u>Model</u> <u>Characteristics</u> <u>PT6A-6B</u> aseic model <u>PT6A-6A</u> Incorporates provisions for reversing propeller. <u>PT6A-6A</u> Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing. <u>PT6A-20</u> Maximum continuous rafing equal to takeoff. Provisions for reversing. <u>PT6A-20</u> Similar to PT6A-20 except for optional propeller reversing. <u>PT6A-20A</u> Similar to PT6A-20 except for optional propeller reversing system. <u>PT6A-20A</u> Similar to PT6A-20 except for optional propeller reversing system. <u>PT6A-11AG</u> Similar to PT6A-20 except for optional propeller reversing system. <u>PT6A-15AG</u> Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. <u>PT6A-64C20</u> Similar to PT6A-27, except fue configuration previ		Emergency use	e of MIL-G-5572, Grades 80/07, 91/98, 100/130 and 115/145 is permitted for a total time period n				
when switching fuel type. NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140AA MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Mamual instruction for inertial separation of snow and icing particles, when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Mamual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B		exceeding 150	hours during any overhaul period. It is not necessary to purge the unused fuel from the system				
NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing. PT6A-20 Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar		when switching	g fuel type.				
NOTE 9. The following oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001, 4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3077582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6 Incorporates provisions for reversing propeller. PT6A-6 Incorporates provisions for reversing propeller. PT6A-6 Basic model PT6A-70 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Similar to PT6A-20 except for optional propeller reversing. PT6A-20A Similar to PT6A-20 except for optional propeller reversing system.							
4001, 12001, 13001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182. NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11	NOTE 9.	The following	oils are eligible for these engines: PWC PT6 Engine Service Bulletin Nos. 1001, 1601, 3001,				
MOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Incorporates provisions for reversing propeller. PT6A-6.B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11AC Similar to PT6A-20 except for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6C20D <		4001, 12001, 1	3001 list approved brand oils, PT6A-140AG MM 3079582 and PT6A-140A MM 3077182.				
NOTE 10. These engines meet FAA requirements for operation in icing conditions when the intake system conforms with the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation. Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment and do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar							
Model Characteristics Model Characteristics PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing. PT6A-6B Incorporates provisions for reversing. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. PT6A-11 Similar to PT6A-20 except for optional propeller reversing system. PT6A-11AG Similar to PT6A-21 except derat	NOTE 10.	These engines	These engines meet FAA requirements for operation in icing conditions when the intake system conforms with				
approved alcohol system is used, flight in visible moisture is restricted as specified in the PWC Installation. Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment an do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except deated. Model Characteristics PT6A-11 Similar to PT6A-21, intended for agricultural aviation. Permissible rotor component lives, overhaut, inspection intervals and ful		the PWC Installation Manual instruction for inertial separation of snow and icing particles; when the alternative					
Manual. These engines also meet FAA requirements for adequate disk integrity and rotor blade containment an do not require external amoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 mechanism. PT6A-0B Incorporates provisions for reversing propeller. PT6A-20 mechanism. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar to PT6A-20 except derated. Model Characteristics PT6A-20B Similar to PT6A-21 except derated. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-13AG Similar to PT6A-21, intended for agricultural avi		approved alcoh	nol system is used, flight in visible moisture is restricted as specified in the PWC Installation				
do not require external armoring. NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11 Similar to PT6A-21 except derated. PT6A-113G Similar to PT6A-21, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin in Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. P		Manual. These	e engines also meet FAA requirements for adequate disk integrity and rotor blade containment an				
NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6A-9 Single stage reduction gearing. (Output shaft speed 6,203 or p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20B Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-11 Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11 Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nes, 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nes, 12102, 12103, and 12144 respectively. PT6A-15AG		do not require	external armoring.				
NOTE 11. For reversing application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-13 Similar to PT6A-21, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. <td></td> <td></td> <td></td>							
Governor Type X210XXX. NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6A-700 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-200 Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-21 except derated. Model Characteristics PT6A-15AG Similar to PT6A-20 except for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin Nos. 12102, 12103, and 12144 respectively.	NOTE 11.	For reversing a	application the PT6A-6A and PT6A-20 engines must be equipped with Woodward Propeller				
NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.n.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-21 except derated. Model Characteristics PT6A-11A Similar to PT6A-21 except derated. Model Characteristics PT6A-1AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-26/C20 Similar to PT6A-27 except derated. PT6A-21 Similar to PT6A-27 except this con		Governor Type X210XXX.					
NOTE 12. Fuel controls approved for each engine model are listed in the applicable Parts Catalog. NOTE 13. The above models incorporate the following characteristics: Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6L-15AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively.		and a second sec					
Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-11 Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-27 except derated. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-27 except derated. PT6A-21 Similar to PT6A-27 except derated. <td< td=""><td>NOTE 12.</td><td>Fuel controls a</td><td>pproved for each engine model are listed in the applicable Parts Catalog.</td></td<>	NOTE 12.	Fuel controls a	pproved for each engine model are listed in the applicable Parts Catalog.				
Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller. PT6A-6B Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-21, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin.	NOTE		1 decisions and the 14 contract of a second statements				
Model Characteristics PT6A-6 Basic model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional	NOTE 13.	The above mod	tels incorporate the following characteristics:				
Model Characteristics PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-20, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-66 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-66 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively.		Model	Characteristics				
PT6A-60 Date model PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-66 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-66 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-66 converted to PT6A-20 by service bulletin. Nos. 1202		DTCA 6	Daria madal				
PT6A-6A Incorporates provisions for reversing propeller. PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6 PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-20 PT6A-21 Similar to PT6A-27 except derated. </td <td></td> <td>PTOA-0</td> <td>Basic model</td>		PTOA-0	Basic model				
PT6A-6B Incorporates provisions for reversing propeller, PT6A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-6A	Incorporates provisions for reversing propeller.				
PT6A-05 Incorporates provisions for reversing propeller, P16A-20 mechanism. PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rafing equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-620 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-620 by service bulletin. Nos. 12102,		DECA CD					
PT6B-9 Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.) PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20 Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-5AG Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-27 except derated. PT6A-21 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-6B	Incorporates provisions for reversing propeller, P16A-20 mechanism.				
PT6A-20 Maximum continuous rating equal to takeoff. Provisions for reversing. PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-5AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6B-9	Single stage reduction gearing. (Output shaft speed 6,230 r.p.m.)				
PT6A-20A Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-20	Maximum continuous rating equal to takeoff. Provisions for reversing.				
system. PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-20A	Similar to PT6A-20 except for exhaust port configuration and optional propeller reversing				
PT6A-20B Similar to PT6A-20 except for optional propeller reversing system. PT6A-11 Similar to PT6A-21 except derated. Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			system.				
Model Characteristics PT6A-11AG Similar to PT6A-21 except derated. PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-20B	Similar to PT6A-20 except for optional propeller reversing system				
Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT64-11	Similar to PT6A-21 except derated				
Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		1104-11	Similar to 1 107-21 except detailed.				
Model Characteristics PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service Bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque							
PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		Model	Characteristics				
PT6A-11AG Similar to PT6A-11, intended for agricultural aviation. Permissible rotor component lives, overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque							
overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PI6A-11AG	Similar to P16A-11, intended for agricultural aviation. Permissible rotor component lives,				
Nos. 12102, 12103, and12144 respectively. PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			overhaul, inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin				
PT6A-15AG Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives, overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			Nos. 12102, 12103, and 12144 respectively.				
overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		PT6A-15AG	Similar to PT6A-27, intended for agricultural aviation. Permissible rotor component lives.				
Nos. 12102, 12103, and 12144 respectively. PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			overhaul inspection intervals and fuel requirements are listed in PWC Engine Service Bulletin				
PT6A-6/C20 Similar to PT6A-20 except this configuration previously PT6A-6 converted to PT6A-20 by service bulletin. PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			Nos. 12102. 12103. and 12144 respectively.				
PTGA-20 Similar to PTGA-27 except dus companient previously PTGA-0 converted to PTGA-20 by service bulletin. PTGA-21 Similar to PTGA-27 except derated. PTGA-25 Similar to PTGA-27 except for modifications required for inverted flight optional torque		PT64 6/C20	Similar to PT6A_20 except this configuration provided by DT6A_6 converted to DT6A_20 by				
PT6A-21 Similar to PT6A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque		F10A-0/C20	similar to 1 10A-20 except uns configuration previously P 10A-0 converted to P16A-20 by				
P10A-21 Similar to P16A-27 except derated. PT6A-25 Similar to PT6A-27 except for modifications required for inverted flight optional torque			I SELVICE DUDENT				
P16A-25 Similar to P16A-27 except for modifications required for inverted flight optional torque		DECA 01					
		PT6A-21	Similar to PT6A-27 except derated.				
		РТ6А-21 РТ6А-25	Similar to PT6A-27 except derated. Similar to PT6A-27 except for modifications required for inverted flight optional torque controller, and aluminum alloy castings.				

TCDS E4EA NOTE 13.

(Cont.)

PAGE 23

PT6A-25A	Similar to PT6A-25 excent for magnesium allow major castings in place of aluminum
110112011	alloy.
PT6A-25C	Similar to PT6A-25A except for A-34 hot section; T-3B first stage compressor blades and long inducer propeller; A-100 large bore reduction gears; and A-25A installation features. Ratings and limit are the came on the 3.34.
DT6A 27	Eastures higher retings, revised engine perts and integrated propeller reversing control
PT0A-27	Similar to DEGA 27 amount for high printer tashing tamperature limit
P16A-28	Similar to P16A-27 except for higher inter-turbine temperature limit.
PT6A-29	Features higher ratings, revised first stage reduction gearing.
PT6A-34	Similar to PT6A-27 except incorporates a compressor turbine similar to PT6T-3 for higher ratings.
PT6A-34B	Similar to PT6A-34, except for aluminum alloy major castings in place of magnesium alloy.
PT6A-34AG	Similar to PT6A-34, intended for agricultural aviation. Permissible rotor component lives,
	overhaul, inspection intervals and fuel requirements are listed in P&WACL Engine Service
	Bulletin Nos. 1302, 1303, and 1344 respectively.
PT6A-35	Similar to PT6A-135 but incorporating the reduction gearbox of the PT6A-34.
PT6A-36	Similar to PT6A-34 except for increased turbine inlet temperature limits.
PT6A-38	Similar to PT6A-41 except derated.
PT6A-40	Similar to PT6A-42 except for increased flat rating and manual fuel control override.
PT6A-41	Features an enlarged compressor and two stage power turbine for higher ratings.
PT6A-41AG	Similar to PT6A-41, intended for agricultural aviation.
PT6A-42	Similar to PT6A-41 except for increased cruise rating and increased inter-turbine temperature
	limits with improved compressor and reduced loss exhaust ducts.
РТ6А-42А	Same as PT6A-42 except for addition of fuel control unit with manual override, compressor wash ring, accessory gearbox chip detector, P3 filter drain, and oil filler neck with check valve.
PT6A-45	Similar to PT6A-41 except for increased ratio reduction gearbox and higher ratings.
РТ6А-45А	Similar to PT6A-45 except for increased takeoff rating and increased inter-turbine temperature
РТ6А-45В	Similar to PT6A-45A except for increased augmentation fluid flow for takeoff rating to a higher air inlet temperature.
PT6A-45R	Similar to PT6A-45B except for provision for automatic power increase from alternate takeoff power to takeoff power.
PT6A-50	Similar to PT6A-45A except for new reduction gearbox.
PT6A-112	Similar to PT6A-27 except incorporates PT6A-41 fuel system concepts and PT6A-135 reduction gearbox.
PT6A-114	Similar to PT6A-135 with a single port exhaust and PT6A-41 fuel system concepts and PT6A- 135 reduction generators
PT6A-114A	Throttle push version of -114 incorporating the -135A compressor, and a new strengthened propeller shaft
PT6A-135	Similar to PT6A-36 except for new reduction gearbox and higher cruise rating
PT6A-135A	Similar to PT6A-135 except for increased thermodynamic capability compressor
PT64-110	Similar to PT64-11 except for incorporation of PT64-135 reduction georbox
PT64-65B	Similar to PT6A_45 except for additional axial compressor stage and increased diameter gas
TTOA-03D	producer turbine wheel.
PT6A-65R	Identical to PT6A-65B except for reserve takeoff rating.

Model	Characteristics
PT6A-65AR	Uprated maximum continuous power PT6A-65R.
PT6A-65AG	Similar to PT6A-65, intended for Agricultural Aviation. Ratings similar to the 65AR without automatic reserve power.
РТ6А-60	Uprated PT6A-42, featuring new first stage compressor gas producer turbine from PT6A-65 and gearbox from PT6A-45.
PT6A-60A	Uprated altitude performance PT6A-60.
PT6A-60AG	Similar to PT6A-60A, but with derated max continuous power, and intended for agricultural aviation.
PT6A-61	Similar to PT6A-60 except for PT6A-42 gearbox.
PT6A-61A	Updated altitude performance PT6A-61.
PT6A-116	Similar to PT6A-135 except for reduced takeoff and maximum continuous power and torque limit with PT6A-121 externals.
DT6A 121	Similar to PT6A 21 amount for a PT6A 135 reduction goothey and a PT6A 112 neuror turbing

 PT6A-121
 Similar to PT6A-21 except for a PT6A-135 reduction gearbox and a PT6A-112 power turbine.

TCDS E4EA			PAGE 24					
NOTE 13. (Cont'd)	PT6B-35F	Combines the aerodynamic components of the PT6A-135, the n and the PT6T-3 generator and exhaust case. Intended for remot	echanical layout of the PT6A-34 e drive propeller applications.					
	PT6D-114A	Based on the PT6A-114A with the main difference being the de reduction gearing and output shaft. Intended for integration with incorporated power turbine governors and a propeller output sha	letion of the second stage h a combining gearbox aft.					
	PT6A-52	Similar to the PT6A-61 with the PT6A-60A thermal rating.						
	PT6A-140	Similar to the PT6A-114A with a new RGB for increased mecha turbomachinery for increased thermodynamic power.	anical power and improved					
	PT6A- 140AG	Similar to PT6A-140 with a dual port exhaust duct and intended	for agricultural aviation.					
	PT6A-140A	Similar to PT6A-140 with a dual port exhaust duct.						
NOTE 14.	Certain engine p 1402, 1602,, 300 maintenance ma PT6A-140A refi intervals are list 12003, 12103, 1 3077182.	parts are life limited. These limits are listed in P&WC Engine Serv 02, 4002, 12002, 12102, 13002, and 13202 as revised. PT6A-140 innual P/N 3075742; PT6A-140AG refer to AWL section of the main er to AWL section of the maintenance manual P/N3077182. Permi ed in PWC Engine Service Bulletin Nos. 1003, 1303, 1403, 1603, 3003, 13203, 13303, 1903 as revised, and PT6A-140AG MM 307	tice Bulletin Nos. 1002, 1302, refer to AWL section of the ntenance manual P/N 3079582; issible overhaul and inspection 1703, 1803, 3003, 3303, 4003, 9582 and PT6A-140A MM					
NOTE 15.	Fuel anti-icing a concentration no	additives conforming to specifications 3GP526A PFA 55MB, MIL- ot exceeding 0.15% by volume.	I-27686E may be used, at a					
NOTE 16.	For PT6A-34, P conditions by m of the PWC Inst	For PT6A-34, PT6A-34B, PT6A-36, PT6A-45, PT6A-45A and PT6A-45B power may be restored in hot day conditions by means of water or water/methanol injection when accomplished in accordance with the requirements of the PWC Installation Manual.						
NOTE 17.	For PT6A-50 C.G. location (dry weight) is 27.69 in. behind forward mounting ring, 0.27 in. below horizontal centerline and 0.15 in. left of vertical centerline.							
NOTE 18.	Augmentation f No. 328.	luid, when used, must meet the requirements of PWC Specification	1 CPW					
NOTE 19.	This Type Certi PT6B and PT6E administrative p engines produce identical. The in and PT6D series	ficate Data Sheet reflects the certification basis and approval for th) series engines listed under "Certification Basis". Two Type Certi nuposes: E4EA under FAR 21.29 for engines produced in Canada ed in the United States. The type design for each model engine, reg nformation on this Type Certificate Data Sheet applies to all Pratt a s engines, including:	ose serial numbered model PT6A, ficates have been issued for and E2NE under FAR 21.21 for gardless of where produced, is & Whitney model PT6A, PT6B					
	(A) Those seria Pratt & Whitney reissued to Pratt Canada.	1 numbered engines listed on and certificated under FAA Type Cer / Aircraft Division of United Technologies Corporation, East Hartf : & Whitney of Canada Ltd. (Formerly United Aircraft of Canada,	tificate E2NE, originally issued to ford, Connecticut, U.S.A. and LTd.), Longueuil, Quebec,					
	(B) Those seria E4EA, issued to	l numbered engines listed above under "Certification Basis," certif Pratt & Whitney Canada Corp, Longueuil, Quebec, Canada.	icated under this Type Certificate,					
NOTE 20.	Service Bulletin maintenance maintenance m	ns, structural repair manuals, vendor manuals, aircraft flight manua anuals, which contain a statement that the document is Transport C re considered FAA approved. These approvals pertain to the type o	ls, and overhaul and Canada approved, are accepted by design only.					
NOTE 21	The PT6A-140, module and the	A-140AG and A-140A engines may be overhauled or maintained power section module. The separation point is the "C" flange. PT6A-140 PT6A-140AG PT6A-1	as two modules, the gas generator					
	Gas generator m Power section n	Iodule (P/N) 3076223 3079409 307959 Iodule (P/N) 3076225 3079410 307959	22 33					
NOTE 22	Removed at Re	avision 26						

TCDS E4EA			PAGE 25		
NOTE 23.	The following emissions 40 CFR Part 87, effective	standards promulgated in 14 CFR Part 34, Am October 31, 2012, have been complied with f	endment 5a, effective October 23, 2013, and or: PT6A-140, -140AG and -140A.		
	Fuel Venting Emission St	andards: 14 CFR §§ 34.10(b) and 34.11; in a	ddition 40 CFR §§ 87.10(b) and 87.11.		
	For the PT6A-140, -140A demonstrated with the CA The fuel venting requiren PT6A-140, -140AG and - turboprops.	G and -140A the engine manufacturer has dec LEP/6 emission standards in ICAO's Annex 10 tents are applicable. The smoke and emission 140A, at 867 shp (647 kw), is under the powe	clared that compliance has also been 5, Volume II, Third Edition, dated July 2008. s requirements are not applicable because the r threshold of 1000 KW for applicability to		
NOTE 24.	Transport Canada approv	ed Installation Manual no. 3075740, dated Ma	y 2012, for the PT6A-140 engine model.		
	Transport Canada approved Parts List for the first production PT6A-140 engine – Engine assembly drawing no, 3076226 change A and subsequent.				
	Transport Canada approv model.	ed Installation Manual no. 3079605, dated No	vember 2014, for the PT6A-140A engine		
	Transport Canada approv model.	ed Installation Manual no. 3079575, dated No	vember 2014, for the PT6A-140AG engine		
	Transport Canada approved Parts List for the first production PT6A-140A engine – Engine assembly drawing no, 3079594 change A and subsequent.				
	Transport Canada approv 3079411 change A and st	ed Parts List for the first production PT6A-140 absequent.	0AG engine – Engine assembly drawing no,		
	PT6A-140 PT6A-140A PT6A-140AG	Maintenance Manual 3075742 3077182 3079582	Overhaul Manual 3075743 3077183 3079583		

----END-----

A4 – Datasheet Lycoming IO-720

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

1E15 Revision 6 Textron Lycoming IO-720-A1A, -A1B, -A1BD, -B1A, -B1B, -B1BD, -C1B, -C1BD, -D1B, -D1BD, -D1C, -D1CD

February 15, 1988

TYPE CERTIFICATE DATA SHEET NO. 1E15

Engines of models described herein conforming with this data sheet (which is a part of Type Certificate No. 1E15) and other approved data on file with the Federal Aviation Administration meet the minimum standards for use in certificated aircraft in accordance with pertinent aircraft data sheets and applicable portions of the Civil Air Regulations/Federal Aviation Regulations provided they are installed, operated and maintained as prescribed by the approved manufacturer's manuals and other approved instructions.

Manufacturer

Textron Lycoming/Subsidiary of Textron, Inc. Williamsport Plant Williamsport, Pennsylvania 17701

	IO-720-A1A, -A1B, -A1BD
	-B1A, -B1B, -B1BD
	-C1B, -D1B, -D1C-C1BD
Model Lycoming	-D1BD, -D1CD
Type 8H0A Direct Drive	
Rating	
Max. continuous hp., r.p.m., full throttle at:	
Sea level pressure altitude:	400-2650*
Takeoff, hp., r.p.m., full throttle at:	
Sea level pressure altitude	400-2650
Fuel (Min. grade aviation gasoline), Service Instruction No. 1070	100/130
Lubricating oil (Lubricating should conform to the Specifications as listed or subsequen	Lycoming Spec. No. 301-F
revisions thereto)	Service Instruction No. 1014
Bore and stroke, in.	5.125 x 4.375
Displacement, cu. in.	722
Compression ratio	8.7:1
Weight (dry), lb.	See NOTE 9
Propeller shaft flange, SAE No.	Type 2 modified
Crankshaft dampers (torsional)	one 3.5 order
	six 4th order
	one fifth order
Fuel injection	Bendix RSA-10AD1
	RSA-10ED1 (-B1B, -B1BD)
Fuel pump	See NOTE 2
	RG9080-J4A (D1B, -D1C)
External fuel filtration requirements	150 micron, max.
Ignition, dual	See NOTE 9
Ignition timing °BTC	20°
Spark plugs	See NOTE 6
Oil sump capacity, qt.	19
Usable oil sump capacity, qt.	16
NOTES	1,2,3,4,5,6,7,8,9

*Models IO-720-D1B, -D1C, -D1BD, -D1CD have an alternate rating of 375 hp at 2500 r.p.m.

Page No.	1	2	3
Rev. No.	6	6	6

1E15

2

Certification basis:

Regulations & Amendments	Model	Date of Application	Date Type Certificate <u>1E15 Issued/Revised</u>
CAR 13 as amended to June 15, 1956			
& 13-1, 13-2, 13-3	IO-720-A1A	December 6, 1960	October 25, 1961
13-4	IO-720-B1A	February 19, 1963	November 4, 1965
	IO-720-A1B	February 12, 1971	February 22, 1971
	IO-720-B1B	February 12, 1971	February 22, 1971
	IO-720-C1B	December 16, 1971	December 22, 1971
	IO-720-D1B	October 22, 1973	October 29, 1973
	IO-720-A1BD	August 21, 1975	December 30, 1976
	IO-720-B1BD	December 28, 1976	December 30, 1976
	IO-720-C1BD	January 24, 1977	January 28, 1977
	IO-720-D1BD	January 24, 1977	January 28, 1977
	IO-720-D1CD	June 6, 1977	June 10, 1977
	IO-720-D1C	March 11, 1982	April 15, 1982

Production basis: Production Certificate No. 3

NOTE 1.	Maximum permissible temperatures are as follows:				
	Cylinder head	500°F (well-type thermocouple)			
	Oil inlet	245°F			

NOTE 2.	Fuel pressure limits:						
		<u>Maximum</u>	<u>Minimum</u>	Idle (min.)			
	Inlet to fuel pump when supplied with engine						
	-D1B, -D1C	55 p.s.i.	-2 p.s.i.	#			
	All others	45 p.s.i.	-2 p.s.i.	#			
	Inlet to injector						
	-B1A, -B1B	35 p.s.i.	25 p.s.i.	#			
	All others	45 p.s.i.	18 p.s.i.	12 p.s.i.			
	Oil pressure limits:						
	Idling	#	25 p.s.i.				
	Normal operation	95 p.s.i.	55 p.s.i.	(50 p.s.i.: -A1A, -A1B)			
	Start & warm-up	115 p.s.i.	100200 .				
	Fuel Pump (optional)	Lear Siegler M	lodel				
	-A1A, -A1B, -A1BD	RG17980 or RG9080					
	-B1BD, -C1B, -C1BD, -D1B, -D1BD, -D1C, -D1CD	RG9080					

NOTE 3. The following accessory drive provisions are available.

IO-720 Model	-B1B				Rotation		Max	imum	Maximum
	-B1A	-D1C	-C1BD		Facing	Speed	To	rque	Overhang
	-A1B	-D1B	-B1BD	-D1CD	Drive	Ratio to	(in	lb)	Moment
Accessory	-A1A	-C1B	-A1BD	-D1BD	Pad	Crankshaft	Cont.	Static	(in-lb.)
Starter	1	X	2	K	CC	13.556:1	#	450	150
Alternator	1	X	2	K	С	3.20:1	60	120	175
Generator (Optional)]	X	2	K	С	2.50:1	60	120	175
Generator (Opt)		X	2	K	С	3.1:1	60	120	175
Accessory #1	1	X	2	K	CC	1.3:1	70	450	25
Accessory #2]	X	1	¥	С	1.3:1	100	800	40
Accessory #2		#	2	K	С	1.3:1	180	2200	40
Accessory #2 (Opt)		#	2	K	С	1.3:1	180	2200	100
Tachometer]	X	2	K	С	0.5:1	7	50	5
Fuel Pump		X	7	¥	CC	1:1	25	450	25
Fuel Pump		#	2	K	С	1:1	25	450	25
Spray Pump (Opt)]	X	Σ	K	С	1.346:1	250	1600	40
Propeller Gov		X	2	K	С	0.895:1	125	1200	25

"C" - Clockwise "CC" - Counter-clockwise. "#" indicates "does not apply"

		3	1E15
NOTE 4.	These engines in	corporate provisions for absorbing propeller thrust in both tractor and pusher type installa	tions.
NOTE 5.	These engines are	e equipped with all-weather ignition harness as standard equipment.	
NOTE 6.	Spark plugs: See	latest revision of Lycoming Service Instruction No. 1042 for approved equipment.	
NOTE 7.	These engines in <u>Model</u> IO-720-A1A IO-720-B1A IO-720-B1B IO-720-C1B IO-720-D1C IO-720-A1BD IO-720-B1BD IO-720-B1BD IO-720-D1BD IO-720-D1BD IO-720-D1CD	corporate the following additional characteristics: <u>Characteristics</u> Basic model. Eight cylinder, horizontally opposed, air-cooled direct drive fuel injection engine, internal oil jet piston cooling. Same as -A1A except equipped with Bendix S8LN-1208 and S8LN-1209 magnetos. Same as -A1A except op exhaust cylinders and offset exhaust valve shroud tubes. Same as -B1A except equipped with Bendix S8LN-1208 and S8LN-1209 magnetos and RSA-10ED1 fuel injection. Same as -A1B except that it has up-exhaust cylinder heads. Same as -A1B except has a rear type air inlet housing instead of a front inlet. Same as -A1B except has a dual magneto. Same as -B1B except has a dual magneto. Same as -C1B except has a dual magneto. Same as -D1B except has a dual magneto.	Bendix
NOTE 8.	Starters, generato Lycoming Servic	ors and alternators approved for use on these engines are listed in the latest revision of AV the Instructions No. 1154.	′CO

NOTE 9. IO-720 Model, Weight (dry), ignition, dual, and C.G.

NOTE 7. 10	120 100001, 1	(diy), igiliaoli, dadi, and C.	U.			
			C.G. Location (dry) including starter and generator			
			Propeller Flange	Below Crankshaft	Off Crankshaft	
Model	Weight	Magnetos	Front Face, in.	<u>C.L., in.</u>	<u>C.L. in.</u>	
-A1A	565	Bendix S8LN-701, S8LN-705	21.33	0.91	0.20 Left	
-A1B	565	S8LN-1208, S8LN-1209	21.33	0.91	0.20 Left	
-B1A	557	S8LN-701, S8LN-705	21.90	0.80	0.10 Left	
-B1B	557	S8LN-1208, S8LN-1209	21.90	0.80	0.10 Left	
-C1B	566	S8LN-1208, S8LN-1209	21.33	0.91	0.20 Left	
-D1B	580	S8LN-1208, S8LN-1209	21.33	0.91	0.20 Left	
-A1BD	561	D8LN-2200	21.13	0.81	0.00 Left to Right	
-B1BD	557	D8LN-2230	21.70	0.70	0.10 Right	
-C1BD	563	D8LN-2230	21.13	0.81	0.0 Left to Right	
-D1BD, -D1CD	571	D8LN-2200	21.70	0.70	0.10 Right	
-D1C	580	S8LN-1208, S8LN-1209	21.33	0.91	0.20 Left	

.....END.....