INSTITUTO UNIVERSITARIO AERONÁUTICO

Estudio de Sensibilidad del Motor Stirling de Concepto

Informe Técnico: DMA-024/13

Proyecto: FONARSEC-Intihuasi

Fecha: 11/10/2013

Autores:

Ms. Ing. Gustavo Scarpin

Revisó:

Ing. Diego Llorens
PROYECTO STIRLING-SOLAR

Estudio de Sensibilidad del Motor Stirling de Concepto

Por:

Ms. Ing. Gustavo Scarpin

RESUMEN

Dentro del proyecto de desarrollo llevado a cabo por el Consorcio Público Privado Intihuasi, en el que el IUA es parte, y patrocinado por el Fondo de Innovación Tecnológica Sectorial de Energía Solar 2010 que administra el Fondo Argentino Sectorial (FONARSEC), se presenta un estudio de sensibilidad en relación a cómo afectan a la Potencia y Eficiencia de un motor Stirling pequeños cambios en los principales parámetros de diseño.

Para el estudio se utilizó como base el Motor Stirling de la fase de Concepto (Ref. [1])

El estudio demuestra que es necesario extremar los cuidados en el diseño, fabricación y armado de los componentes ya que pequeños cambios en las propiedades de los mismos pueden afectar, en mayor o menor medida, a las performances del motor.

Córdoba, 11 de octubre de 2013
ÍNDICE

1. INTRODUCCIÓN ... 4

2. DESARROLLO .. 4
 2.1 Cálculo de Performances .. 4
 2.2 Estudio de Sensibilidad ... 4
 2.2.1 Número de Mallas .. 4
 2.2.2 Temperatura Externa .. 4
 2.2.3 Volumen Muerto ... 4

3. RESULTADOS .. 5
 3.1 Número de Mallas .. 5
 3.1.1 Calentador ... 5
 3.1.2 Enfriador .. 6
 3.1.3 Regenerador ... 7
 3.1.4 Calor Entrante al Calentador .. 8
 3.2 Temperatura Externa .. 9
 3.2.1 Calentador ... 9
 3.2.2 Enfriador .. 10
 3.2.3 Calor Entrante al Calentador .. 11
 3.3 Volumen Muerto .. 12
 3.3.1 Zona Caliente o de Expansión ... 12
 3.3.2 Zona Fría o de Compresión ... 13
 3.3.3 Calor Entrante al Calentador .. 14
 3.4 Resumen .. 15
 3.4.1 Relaciones Dimensionales ... 15
 3.4.2 Relaciones Adimensionales ... 16

4. CONCLUSIONES .. 17

5. REFERENCIAS.. 17

ANEXO A : ARCHIVO DE ENTRADA – STIRSIMPLE.DAT .. 18

Autor: Gustavo Scarpin
ÍNDICE DE FIGURAS
Figura 1: Calentador - Sensibilidad al Cambio del Número de Mallas 5
Figura 2: Enfriador - Sensibilidad al Cambio del Número de Mallas .. 6
Figura 3: Regenerador - Sensibilidad al Cambio del Número de Mallas 7
Figura 4: CalorEntrantealCalentador-SensibilidadalCambio del Número de Mallas 8
Figura 5: Sensibilidad al Cambio de la Temperatura Exterior del Calentador 9
Figura 6: Sensibilidad al Cambio de la Temperatura Exterior del Enfriador 10
Figura 7: CalorEntrantealCalentador-SensibilidadalCambio de Temperatura Exterior 11
Figura 8: Zona Caliente - Sensibilidad al Cambio del Volumen Muerto 12
Figura 9: Zona Fría - Sensibilidad al Cambio del Volumen Muerto .. 13
Figura 10: CalorEntrantealCalentador-SensibilidadalCambio de Volumen Muerto 14

ÍNDICE DE TABLAS
Tabla 1: Volumen Muerto ... 12
Tabla 2: Relaciones Dimensionales ... 15
Tabla 3: Relaciones Adimensionales ... 16
1. **INTRODUCCIÓN**

Con el propósito de comprender cómo afectan pequeños cambios de los distintos parámetros de diseño, a las performances de un motor Stirling, se procedió a realizar un estudio de sensibilidad.

Como base se tomaron los parámetros de diseño del Motor Stirling de Concepto realizado para el Proyecto FONARSEC-Intihuasi.

Estos valores fueron obtenidos del proceso de diseño/optimización descripto en Ref. [1]. Como los valores de los parámetros de base fueron tomados luego de realizada la optimización, es de esperar que cualquier cambio en los mismos produzca una disminución de las performances globales del Motor Stirling de Concepto.

2. **DESARROLLO**

2.1 **Cálculo de Performances**

Como métrica de comparación fue seleccionada la potencia de salida, la eficiencia del motor y el calor real transferido al calentador.

Las performances para las condiciones fuera de diseño fueron calculadas utilizando el programa StirSimple.FOR de Ref. [2].

El archivo de entrada StirSimple.DAT para la condición de diseño del Motor Stirling de Concepto, el cual fue adoptado como base de comparación, se lo lista en el ANEXO A.

El motor de base posee las siguientes performances teóricas:

- Potencia: 139.8 [Watt]
- Eficiencia: 42.18 [-]
- $Q_{Entrante}$ (Calor real transferido al Calentador): 331.5 [Watt]

2.2 **Estudio de Sensibilidad**

Seguidamente se describen los distintos parámetros modificados en el estudio de sensibilidad.

2.2.1 **Número de Mallas**

Se modificaron el número de mallas de cada uno de los intercambiadores de calor (Calentador, Regenerador y Enfriador). Al modificarse el número de telas, cambia la longitud de la zona porosa respectiva.

2.2.2 **Temperatura Externa**

Se modificó la temperatura externa tanto en el Calentador como en el Enfriador. Esto hace que cambie la temperatura del gas de trabajo en la zona caliente y fría.

2.2.3 **Volumen Muerto**

Se analizó la influencia de la variación de los volúmenes muertos tanto de la zona fría como de la caliente.
3. **RESULTADOS**

3.1 Número de Mallas

Al variar el número de mallas, se modifica la superficie mojada de los intercambiadores de calor y la pérdida de carga.

3.1.1 Calentador

Para la condición de diseño el número de mallas del calentador es de 22.

Figura 1: Calentador - Sensibilidad al Cambio del Número de Mallas

Análisis: Al disminuir el número de mallas del calentador, la temperatura del gas en la zona caliente disminuye pero disminuye la pérdida de carga que se genera en el fluido al atravesar las mallas.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta P\text{otencia}}{\Delta n_{\text{mallas,calentador}}} \bigg|_{n=22} = -0.603 \ [W] \quad ; \quad \frac{\Delta E\text{ficiencia}}{\Delta n_{\text{mallas,calentador}}} \bigg|_{n=22} = -0.092 \ [%]
\]
3.1.2 Enfriador

Para la condición de diseño el número de mallas del enfriador es de 19.

Análisis: Al disminuir el número de mallas del enfriador, la temperatura del gas en la zona fría aumenta pero disminuye la pérdida de carga que se genera en el fluido al atravesar las mallas.

Las pendientes alrededor de la condición de diseño son:

$$\frac{\Delta P\text{otencia}}{\Delta n_{\text{mallas,Enfriador}}} = -0.612 \ [W] \quad ; \quad \frac{\Delta \text{Eficiencia}}{\Delta n_{\text{mallas,Enfriador}}} = 0.000126 \ [%]$$
3.1.3 Regenerador

Para la condición de diseño el número de mallas del regenerador es de 28.

![Gráfico del regenerador - Sensibilidad al Cambio del Número de Mallas](image)

Análisis: Al disminuir el número de mallas del regenerador, se produce un aumento de la entalpía neta perdida pero disminuye la pérdida de carga que se genera en el fluido al atravesar las mallas.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta \text{Potencia}}{\Delta n_{\text{mallas Regenerador}}} \bigg|_{n=28} = -0.991 \ [W] \quad ; \quad \frac{\Delta \text{Eficiencia}}{\Delta n_{\text{mallas Regenerador}}} \bigg|_{n=28} = 0.195 \ [%]
\]
3.1.4 Calor Entrante al Calentador

En la condición de diseño el calor entrante al calentador es de 331.5 [Watt]

![Gráfico de calor entrante al calentador](image)

Figura 4: Calor Entrante al Calentador - Sensibilidad al Cambio del Número de Mallas

Análisis: En la Figura 4 se observa cómo varía el calor real transferido al calentador a medida que se modifica el número de mallas de cada uno de los intercambiadores de calor. Este gráfico debe analizarse junto a los tres anteriores.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta n_{\text{mallas Calentador}}} = -0.699 \quad [W]; \quad \frac{\Delta Q_{\text{Entrante}}}{\Delta n_{\text{mallas Enfriador}}} = -1.456 \quad [W]
\]

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta n_{\text{mallas Regenerador}}} = -3.953 \quad [W]
\]

Relacionando estos valores con los obtenidos anteriormente:

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia Calentador}} = 1.16; \quad \frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia Enfriador}} = 2.38; \quad \frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia Regenerador}} = 3.99
\]

De las relaciones anteriores se concluye que al variar el número de mallas de los intercambiadores de calor varía la potencia entregada pero a su vez varía fuertemente el calor transferido al calentador. Por ejemplo, para variaciones de número de malla cercanas a la de diseño \((n=28)\), si disminuye el número de mallas del regenerador, la potencia de salida aumenta, sin embargo el incremento de calor que se deberá aportar al calentador para que ello ocurra, aumenta 4 veces respecto del incremento de potencia obtenido.

Autor: Gustavo Scarpin
3.2 Temperatura Externa

Al variar la temperatura externa de los intercambiadores de calor se modifica la temperatura de los gases dentro de los mismos. Esto hace que cambie la potencia entregada por el motor y su eficiencia, tal como lo predice el teorema de Carnot.

3.2.1 Calentador

La temperatura exterior del calentador para la condición de diseño es de 650 °C o 923 K.

Figura 5: Sensibilidad al Cambio de la Temperatura Externa del Calentador

Análisis: Al disminuir la temperatura exterior del calentador disminuye la potencia y eficiencia del motor.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta \text{Potencia}}{\Delta T_h} \bigg|_{T_h=650^\circ C} = 0.193 \quad \frac{W}{^\circ C} \quad ; \quad \frac{\Delta \text{Eficiencia}}{\Delta T_h} \bigg|_{T_h=650^\circ C} = 0.0348 \quad \% \quad ^\circ C
\]
3.2.2 Enfriador

La temperatura exterior del calentador para la condición de diseño es de 27 °C o 300 K.

Figura 6: Sensibilidad al Cambio de la Temperatura Exterior del Enfriador

Análisis: Al aumentar la temperatura exterior del enfriador disminuye la potencia y eficiencia del motor.

Las pendientes alrededor de la condición de diseño son:

$$\left(\frac{\Delta \text{Potencia}}{\Delta T_k} \right)_{T_k=27^\circ} = -0.575 \left[\frac{W}{^\circ C} \right] ; \quad \left(\frac{\Delta \text{Eficiencia}}{\Delta T_k} \right)_{T_k=27^\circ} = -0.1000 \left[\frac{%}{^\circ C} \right]$$
3.2.3 Calor Entrante al Calentador

En la condición de diseño el calor entrante al calentador es de 331.5 [Watt]

![Diagrama](image)

Figura 7: Calor Entrante al Calentador - Sensibilidad al Cambio de Temperatura Exterior

Análisis: En la Figura 7 se observa cómo varía el calor real transferido al calentador a medida que se modifica la temperatura exterior de cada uno de los intercambiadores de calor. Este gráfico debe analizarse junto a los dos anteriores.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta Q_{Entrante}}{\Delta T_{h}} \bigg|_{T_{h}=650°C} = 0.194 \left[\frac{W}{°C} \right] ; \quad \frac{\Delta Q_{Entrante}}{\Delta T_{k}} \bigg|_{T_{k}=27°C} = -0.610 \left[\frac{W}{°C} \right]
\]

Relacionando estos valores con los obtenidos anteriormente:

\[
\frac{\Delta Q_{Entrante}}{\Delta Potencia_{Enfriador}} \bigg|_{T_{h}=650°C} = 1.006 ; \quad \frac{\Delta Q_{Entrante}}{\Delta Potencia_{Calentador}} \bigg|_{T_{k}=27°C} = 1.059
\]

De las relaciones anteriores se concluye que al variar la temperatura exterior de los intercambiadores de calor, la potencia de salida varía casi en forma idéntica al calor entrante por el calentador.

Autor: Gustavo Scarpin
3.3 Volumen Muerto

Al variar el volumen muerto de la zona caliente o fría, se modifica el trabajo que el motor realiza sobre el fluido no utilizado para producir trabajo.

El volumen muerto total del motor en la condición de diseño es de 192.66 cm3 según la siguiente distribución:

<table>
<thead>
<tr>
<th>Zona Fría</th>
<th>Zona Caliente</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ctd}</td>
<td>V_{kt}</td>
</tr>
<tr>
<td>V_{ct}</td>
<td>V_{ct}</td>
</tr>
<tr>
<td>V_{h}</td>
<td>V_{c1}</td>
</tr>
<tr>
<td>V_{c1d}</td>
<td>$Total$</td>
</tr>
<tr>
<td>20.11</td>
<td>19.92</td>
</tr>
<tr>
<td>12.51</td>
<td>34.54</td>
</tr>
<tr>
<td>39.73</td>
<td>24.06</td>
</tr>
<tr>
<td>41.79</td>
<td>192.66</td>
</tr>
</tbody>
</table>

3.3.1 Zona Caliente o de Expansión

Se asume que la variación de volumen es sólo en la zona caliente.

Análisis: Al aumentar el volumen muerto en la zona caliente disminuye la potencia del motor, mientras que la eficiencia prácticamente no se ve afectada.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta \text{Potencia}}{\Delta V_{Total}} \bigg|_{V_{Total}=193} = 0.199 \left[\frac{W}{cm^3} \right] ; \quad \frac{\Delta \text{Eficiencia}}{\Delta V_{Total}} \bigg|_{V_{Total}=193} = -0.016 \left[\% \right]
\]
3.3.2 Zona Fría o de Compresión

Se asume que la variación de volumen es sólo en la zona fría.

Figura 9: Zona Fría - Sensibilidad al Cambio del Volumen Muerto

Análisis: Al aumentar el volumen muerto en la zona fría disminuye la potencia del motor, mientras que la eficiencia prácticamente no se ve afectada.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta \text{Potencia}}{\Delta V_{\text{Total}}} \bigg|_{V_{\text{Total}}=193} = -0.573 \left[\frac{W}{\text{cm}^3} \right] ; \quad \frac{\Delta \text{Eficiencia}}{\Delta V_{\text{Total}}} \bigg|_{V_{\text{Total}}=193} = -0.040 \left[\frac{\%}{\text{cm}^3} \right]
\]
3.3.3 Calor Entrante al Calentador

En la condición de diseño el calor entrante al calentador es de 331.5 [Watt]

![Gráfico](image)

Figura 10: Calor Entrante al Calentador - Sensibilidad al Cambio de Volumen Muerto

Análisis: En la Figura 10 se observa cómo varía el calor real transferido al calentador a medida que se modifica el volumen muerto tanto de la zona caliente como la zona fría. Este gráfico debe analizarse junto a los dos anteriores.

Las pendientes alrededor de la condición de diseño son:

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta V_{\text{Total}}} = -0.357 \left[\frac{W}{cm^3} \right] ; \quad \frac{\Delta Q_{\text{Entrante}}}{\Delta V_{\text{Total}}} = -1.090 \left[\frac{W}{cm^3} \right]
\]

Relacionando estos valores con los obtenidos anteriormente:

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia}_{\text{Zona Caliente}}} = 1.794 \quad ; \quad \frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia}_{\text{Zona Fría}}} = 1.904
\]

De las relaciones anteriores, respecto del calor entrante, se concluye que una variación de volumen muerto de la zona fría afecta más que la variación en la zona caliente. Sin embargo el aumento de la relación entre el calor entrante y la potencia generada es para ambos casos cercano a 2.

Por ejemplo, un aumento de 2 cm³ del volumen muerto de la zona fría produce una caída de potencia de aproximadamente 1 [Watt]. Para mantener la potencia original, debería aumentarse el calor de entrada en 2 [Watt].

Autor: Gustavo Scarpin
3.4 Resumen

Seguidamente se presentan dos tablas en la que se resumen todos los resultados presentados anteriormente.

3.4.1 Relaciones Dimensionales

En la siguiente tabla se presenta los resultados con las dimensiones, tal como fueron presentados los resultados hasta ahora.

<table>
<thead>
<tr>
<th>Número de mallas</th>
<th>Relación</th>
<th>ΔPotencia [Watt]</th>
<th>ΔEficiencia [%]</th>
<th>ΔQEntrante [Watt]</th>
<th>ΔQEntrante / ΔPotencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calentador</td>
<td></td>
<td>-0.603</td>
<td>-0.092</td>
<td>-0.699</td>
<td>1.160</td>
</tr>
<tr>
<td>Enfriador</td>
<td></td>
<td>-0.612</td>
<td>0.000</td>
<td>-1.456</td>
<td>2.380</td>
</tr>
<tr>
<td>Regenerador</td>
<td></td>
<td>-0.991</td>
<td>0.195</td>
<td>-3.953</td>
<td>3.987</td>
</tr>
<tr>
<td>Temp. Exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calentador</td>
<td>T_h=650°</td>
<td>0.193</td>
<td>0.035</td>
<td>0.194</td>
<td>1.006</td>
</tr>
<tr>
<td>Enfriador</td>
<td>T_h=27°</td>
<td>-0.575</td>
<td>-0.100</td>
<td>-0.610</td>
<td>1.059</td>
</tr>
<tr>
<td>Vol. Muerto</td>
<td>Zona Caliente</td>
<td>V_{total}=193 cm³</td>
<td>-0.199</td>
<td>-0.016</td>
<td>-0.357</td>
</tr>
<tr>
<td></td>
<td>Zona Fría</td>
<td>V_{total}=193 cm³</td>
<td>-0.573</td>
<td>-0.040</td>
<td>-1.090</td>
</tr>
</tbody>
</table>

Interpretación de la Tabla: Por ejemplo, si el número de mallas del regenerador aumenta en 2, es decir, pasa de 28 a 30 mallas, se tiene que:

\[
\Delta\text{Potencia} = -1.982 \text{[Watt]} \rightarrow \text{Potencia} = 137.818 \text{[Watt]}
\]

\[
\Delta\text{Eficiencia} = 0.39 \% \rightarrow \text{Eficiencia} = 42.57 \%
\]

\[
\Delta Q_{\text{Entrante}} = -7.91 \text{[Watt]} \rightarrow Q_{\text{Entrante}} = 323.59 \text{[Watt]}
\]

\[
\frac{\Delta Q_{\text{Entrante}}}{\Delta \text{Potencia}} = 7.974 [-]
\]
3.4.2 Relaciones Adimensionales

En la siguiente tabla se presentan los resultados en forma adimensional.

<table>
<thead>
<tr>
<th>Número de mallas</th>
<th>Calentador $n=22$</th>
<th>Enfriador $n=19$</th>
<th>Regenerador $n=28$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔPotencia [%]</td>
<td>ΔEficiencia [%]</td>
<td>$\Delta Q_{Entrante}$ [%]</td>
</tr>
<tr>
<td></td>
<td>-0.0959</td>
<td>-0.0485</td>
<td>-0.0469</td>
</tr>
<tr>
<td></td>
<td>-0.0851</td>
<td>0.0001</td>
<td>-0.0854</td>
</tr>
<tr>
<td></td>
<td>-0.2009</td>
<td>0.1309</td>
<td>-0.3378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatura Exterior</th>
<th>Calentador $T_h=650^\circ$</th>
<th>Enfriador $T_h=27^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔPotencia [%]</td>
<td>ΔEficiencia [%]</td>
</tr>
<tr>
<td></td>
<td>0.8974</td>
<td>0.5363</td>
</tr>
<tr>
<td></td>
<td>-0.1111</td>
<td>-0.0640</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volumen Muerto</th>
<th>Zona Caliente $V_{Total}=193 \text{ cm}^3$</th>
<th>Zona Fría $V_{Total}=193 \text{ cm}^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔPotencia [%]</td>
<td>ΔEficiencia [%]</td>
</tr>
<tr>
<td></td>
<td>-0.2742</td>
<td>-0.0735</td>
</tr>
<tr>
<td></td>
<td>-0.7891</td>
<td>-0.1814</td>
</tr>
</tbody>
</table>

Interpretación de la Tabla: Por ejemplo, si el volumen muerto total aumenta un 10% debido al incremento de volumen de la zona fría, se tiene que:

ΔPotencia $= -7.891 [%]$
ΔEficiencia $= -1.814 [%]$
$\Delta Q_{Entrante} = -6.335 [%]$

$\frac{\Delta Q_{Entrante}}{\Delta$Potencia} = 0.8029 [-]
4. **CONCLUSIONES**

Luego de realizado el estudio de sensibilidad de los principales parámetros de diseño de un motor Stirling, tomando como base el motor teórico diseñado en la etapa conceptual se puede concluir que principalmente las métricas seleccionadas se modifican en gran medida cuando se cambia:

- El número de mallas del regenerador
- La temperatura exterior del enfriador
- El volumen de la zona fría

5. **REFERENCIAS**

ANEXO A : Archivo de Entrada – StirSimple.DAT

---------- INTIHUASI CONCEPTO ---------- MALLA 60 - Regenerador tipo TelArro

&Motor
vswc = 98.17D-6
vswe = 98.17D-6
vclc0 = 20.11008D-6
vcle0 = 41.7946D-6
phase = 90.0D+0
/
&Inter
t_enfriador = 'm'
t_calentador = 'm'
t_regenerador = 't'
t_matriz = 't'
/
&Geom_Enf
din = 60.0D-3
len = 7.0D-3
dwire = 0.18D-3
porosity = 0.63226D0
/
&Geom_Conk
dck = 12.0D-3
1ck = 36.132D-3
/
&Geom_Conh
dch = 17.D-3
1ch = 36.0D-3
/
&Geom_Reg
lr = 7.D-3
num = 1
/
&Geom_Malla
porosity =0.4674D0
dwire =0.18D-3
longr =140.D-3
espesor = 5.D-3
/
&Geom_Cal
din = 100.0D-3
len = 8.0D-3
dwire = 0.18D-3
porosity = 0.63226D0
/
&Tipo_Gas
t_gas = 'ai'
/
&Operacion
pmean = 100000.D0
tk = 300.0D
th = 923.0D
freq = 50.0D
/

Autor: Gustavo Scarpin