

Modelo Adiabático Ideal de Motores Stirling

Informe Técnico: DMA-003/12

Revisión: /

Proyecto: Stirling-Solar

Fecha: 28/02/2012

Autor:

Ing. Gustavo Scarpin Director Dpto. Mec. Aer

INFORME TÉCNICO DMA-003/12

Página 1 de 34

PROYECTO STIRLING-SOLAR

Modelo Adiabático Ideal de Motores Stirling

Por:

Ing. Gustavo Scarpin

RESUMEN

Dentro del proyecto de investigación sobre generación eléctrica mediante la combinación de un motor con ciclo Stirling y energía solar, se ha procedido a desarrollar un modelo adiabático ideal de motor Stirling.

Dicho modelo, descripto en detalle en este informe, permite analizar cualquiera de las geometrías de motores Stirling existentes.

Debido a las hipótesis realizadas es de esperar que el modelo sobreestime las performances reales del motor.

En el Anexo B se presenta el programa de cómputo StirAd.for el cual permite automatizar los cálculos. A modo de ejemplo se calcula las performances de un motor tipo Alfa.

Córdoba, 28 de febrero de 2012

INFORME TÉCNICO DMA-003/12

Página 2 de 34

<u>ÍNDICE</u>

1. INT	RODUCCIÓN	4
2. DE	SARROLLO	5
2.1	Principales Hipótesis	5
2.2	Desarrollo del grupo de ecuaciones	5
2.2.2	1 Conservación de la masa	5
2.2.2	2 Conservación de energía	6
2.2.3	3 Transferencia de calor en el modelo de motor adiabático	7
2.2.4	Obtención de las ecuaciones diferenciales relevantes	8
2.2	2.4.1 Zona de compresión	8
2.2	2.4.2 Zona de expansión	9
2.2	2.4.3 Regenerador	9
2.2	2.4.4 Zona de calentamiento	10
2.2	2.4.5 Zona de enfriamiento	10
2.2	2.4.6 Ecuación de variación de presión	11
2.2	2.4.7 Trabajo	11
2.3	Resumen de ecuaciones	12
2.3.7	1 Modelo	12
2.3.2	2 Presión	12
2.3.3	3 Masas	12
2.3.4	4 Acumulación de masa	13
2.3.5	5 Caudal másico	13
2.3.6	6 Condicional de temperatura	13
2.3.7	7 Energía	13
2.4	Consideraciones varias	14
3. RE	SULTADOS	16
3.1	Diagrama Presión-Volumen	16
3.2	Presión en función del ángulo de manivela	17
3.3	Volumen total en función del ángulo de manivela	18
3.4	Temperaturas en las zonas de compresión y expansión	18
3.5	Flujos de Calor en las Zona de Enfriamiento, Regeneración y Calentamiento	19
3.6	Caudales Másicos entre Zonas	20

INFORME TÉCNICO DMA-003/12

Página 3 de 34

3	.7	Performances del motor2	21
4.	со	NCLUSIONES	22
5.	RE	FERENCIAS	22
AN	EXO A	A: TEMPERATURA MEDIA EFECTIVA DEL REGENERADOR	23
AN	EXO E	B: MANUAL DE USUARIO – PROGRAMA STIRAD	25

INFORME TÉCNICO DMA-003/12

Página 4 de 34

1. INTRODUCCIÓN

Existe una gran variedad de modelos matemáticos para estimar el comportamiento físico de los motores Stirling, desde los más simples, como el modelo isotérmico hasta los que modelan prácticamente todo el motor mediante CFD.

El Modelo Adiabático Ideal que aquí se desarrolla es uno de los más simples, pero a diferencia del modelo isotérmico permite estimar en forma preliminar la transferencia de calor en los distintos componentes.

Por lo general a todas las configuraciones de motores Stirling se los puede analizar dividiéndolos en 5 zonas conectadas en forma lineal tal como se muestra en la Figura 1.

Figura 1: Motores Stirling - Configuraciones más comunes¹.

El enfriador, regenerador, y calentador tiene volúmenes constante V_k , V_r , y V_h respectivamente. Tanto la zona de compresión como la de expansión son cada una divididas en un volumen de holgura fija, V_{clc} y V_{cle} respectivamente, y un volumen que depende del tiempo variando entre 0 y sus respectivos valores máximos, V_{swc} y V_{swe} . La variación exacta de V_{swc} y V_{swe} durante un ciclo completo depende de las transmisiones mecánicas empleadas.

El Tipo-Alfa puede ser modelado colocando las cinco zonas, una detrás de otra, en un solo cilindro. En el Tipo-Beta tanto el pistón de potencia como el desplazador se alojan en un solo cilindro, mientras que en la Tipo-Gamma ocupan cilindros separados.

INFORME TÉCNICO DMA-003/12

2. <u>DESARROLLO</u>

2.1 Principales Hipótesis

- a. El motor gira a velocidad constante, por lo tanto, el ángulo de rotación de la manivela θ es proporcional al tiempo.
- b. Todas las pérdidas de presión debido a la fricción y a las diferencias de presión necesarias para acelerar el flujo del gas de trabajo son despreciadas. Por tal motivo, la presión *p*, tiene el mismo valor en todo el motor y varía sólo con el tiempo. Consecuentemente, en la ecuación de conservación de energía, es despreciada la energía cinética del gas de trabajo.
- c. Se asumen despreciables las fugas de gas hacia el exterior.
- d. Se asume que las zonas de compresión y expansión, con volúmenes V_c y V_e , son adiabáticas. Esto significa que no existe intercambio de calor entre el gas y su entorno, tanto sea las superficies de las paredes como en las de las caras del pistón/desplazador. Las temperaturas en cada uno de estos espacios es uniforme pero varían durante el ciclo debido a los cambios de presión, volumen y masa del gas procedente de la zona del enfriador y calentador respectivamente.
- e. Las condiciones de transferencia de calor en la zona del enfriador es lo suficientemente buena como para mantener el gas dentro del volumen V_k a la temperatura T_c uniforme y constante en todo momento. Lo mismo es cierto para la zona del calentador de volumen V_h , siendo la temperatura del mismo T_h uniforme y constante.
- f. Las condiciones de transferencia de calor son suficientes para mantener lineal la distribución de temperaturas dentro del regenerador, el volumen V_r , variando de T_c , donde el regenerador está conectado al enfriador, hasta T_h en el lado del calentador.
- g. Se asume que el gas de trabajo es un gas ideal, es decir:

$$pV = mRT$$

$$c_{p} - c_{v} = R, \quad \gamma = c_{p} / c_{v}$$

$$u = c_{v}T, \quad h = c_{p}T$$

2.2 Desarrollo del grupo de ecuaciones

2.2.1 Conservación de la masa

El balance de masa para cualquier sistema sometido a cualquier proceso puede ser expresado como²:

$$m_{in} - m_{out} = \Delta m_{system}$$

Donde $\Delta m_{system} = m_{final} - m_{initial}$ es el cambio en la masa del sistema. Para volúmenes de control (CV), también puede ser expresado más explícitamente como:

$$m_i - m_e = \left(m_2 - m_1\right)_{CV}$$

Donde: i =entrada , e =salida, 1 =estado inicial del CV, 2 =estado final del CV.

INFORME TÉCNICO DMA-003/12

2.2.2 Conservación de energía

Figura 2: Motores Stirling – Modelo general para las 5 zonas³

De la primera ley de la termodinámica:

pc

$$\underbrace{E_{in} - E_{out}}_{\text{Energía neta transferida}} = \underbrace{\Delta E_{system}}_{\text{Cambio en las energías}}$$

El proceso de flujo inestacionario general, por lo general, es dificultoso de analizar debido a que las propiedades de la masa en la entrada y salida pueden cambiar durante un proceso. Sin embargo, la mayoría de los procesos de flujo inestacionario, pueden ser representados razonablemente bien mediante un proceso de flujo uniforme, el cual involucra la siguiente idealización:

Las propiedades del fluido, a lo largo de la sección de una entrada o salida, son uniformes y constantes, es decir, no cambian con el tiempo o la posición. Si lo hacen, se promedian y se tratan como constantes durante todo el proceso.

El balance de energía para un sistema de flujo uniforme puede ser expresado explícitamente $como^2$:

$$\begin{bmatrix} Q_{in} + W_{in} + \sum_{in} m(h + ke + pe) \end{bmatrix} - \begin{bmatrix} Q_{out} + W_{out} + \sum_{out} m(h + ke + pe) \end{bmatrix} = \begin{bmatrix} m_2(u + ke + pe)_2 - m_1(u + ke + pe)_1 \end{bmatrix}_{system}$$

Cuando los cambios de energía cinética y potencial asociado con el volumen de control y flujos de fluidos son insignificantes, como suele ser generalmente, el balance de energía se simplifica a:

$$\Delta Q - \Delta W = \sum_{out} m h - \sum_{in} m h + (m_2 u_2 - m_1 u_1)_{system}$$

Con

$$\Delta Q = Q_{net,in} = Q_{in} - Q_{out}$$
$$\Delta W = W_{net,in} = W_{in} - W_{out}$$

INFORME TÉCNICO DMA-003/12

2.2.3 Transferencia de calor en el modelo de motor adiabático

La ecuación general de energía puede escribirse como:

$$DQ + \left(c_p T_{in} m_{in} - c_p T_{out} m_{out}\right) = dW + c_v D(mT)$$

Asumiendo gas ideal:

pV = mRT

Aplicando el logaritmo y diferenciando:

Ideal Adiabatic Model

Figura 3: Motores Stirling – Modelo Adiabático Ideal³

La masa total de trabajo permanece constante, se manera que:

$$m_c + m_k + m_r + m_h + m_e = M$$

Diferenciando la ec. de masa total:

$$Dm_c + Dm_k + Dm_r + Dm_h + Dm_e = 0$$

De la ecuación de masa total y de la ec. de estado se tiene:

INFORME TÉCNICO DMA-003/12

$$\frac{p\left(\frac{V_c}{T_c} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{V_e}{T_e}\right)}{R} = M$$

Según el modelo de temperatura presentado en Figura 3, la temperatura media efectiva del regenerador resulta (ver Anexo A):

$$T_r = \frac{T_h - T_k}{\ln\left(\frac{T_h}{T_k}\right)}$$

Despejando la presión de la ecuación anterior,

$$p = \frac{M R}{\frac{V_c}{T_c} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{V_e}{T_e}}$$

2.2.4 Obtención de las ecuaciones diferenciales relevantes

2.2.4.1 Zona de compresión

Figura 4: Modelo Zona de Compresión³

De la ecuación de estado: $m_c = \frac{p V_c}{R T_c}$

Por otro lado, aplicando la ecuación de energía a esta zona, se tiene:

$$-c_p T_{ck} \dot{m}_{ck} = dW_c + c_v D(m_c T_c)$$

Considerando la ecuación de continuidad, la velocidad de acumulación de gas es igual a la masa entrante, es decir: $Dm_c = -\dot{m}_{ck}$, y el trabajo realizado es dado por $dW_c = p DV_c$.

$$c_p T_{ck} Dm_c = p DV_c + c_v D(m_c T_c)$$

De la ecuación anterior y con las tres primeras relaciones para gas ideal, listadas anteriormente, operando:

$$Dm_{c} = \frac{\gamma \ p \ DV_{c} + V_{c} \ Dp}{\gamma \ R \ T_{ck}}$$

Autor: Ing. Gustavo Scarpin

INFORME TÉCNICO DMA-003/12

Para tener en cuenta la diferencia de temperatura entre la zona del compresor y el calentador, se tiene:

If
$$(\dot{m}_{ck} > 0)$$
 then $T_{ck} = T_c$ else $T_{ck} = T_k$

De la forma diferencial de la ecuación de estado:

$$DT_c = T_c \left(\frac{Dp}{p} + \frac{DV_c}{V_c} - \frac{Dm_c}{m_c}\right)$$

2.2.4.2 Zona de expansión

Operando de igual forma que en la zona de compresión se tiene:

$$m_{e} = \frac{p V_{e}}{R T_{e}}$$

$$Dm_{e} = \dot{m}_{he}$$

$$Dm_{e} = \frac{\gamma \ p \ DV_{e} + V_{e} \ Dp}{\gamma \ R \ T_{he}}$$

Con

If
$$(\dot{m}_{he} > 0)$$
 then $T_{he} = T_h$ else $T_{he} = T_e$
$$DT_e = T_e \left(\frac{Dp}{p} + \frac{DV_e}{V_e} - \frac{Dm_e}{m_e}\right)$$

2.2.4.3 Regenerador

De la ecuación de estado: $m_r = \frac{p V_r}{R T_r}$

La temperatura efectiva del regenerador es (Anexo A):

$$T_r = \frac{T_h - T_k}{\ln\left(\frac{T_h}{T_k}\right)}$$

Este valor estacionario de temperatura puede ser usado para calcular la masa dentro del regenerador, asumiendo gas ideal y teniendo en cuenta la distribución lineal de temperatura. Con el volumen V_r permaneciendo constante, un cambio en la masa es relacionado simplemente al cambio en la presión:

$$dm_r = \frac{m_r}{p} dp = \frac{V_r}{R T_r} dp$$

INFORME TÉCNICO DMA-003/12

El flujo másico resulta (caudal entrante +):

 $\dot{m}_{kr} = \dot{m}_{ck} - dm_k$ $\dot{m}_{rh} = \dot{m}_{he} + dm_h$

De la ecuación de energía, siendo el trabajo nulo:

$$DQ_{r} + c_{p} \left(T_{kr} \ \dot{m}_{kr} - T_{rh} \ \dot{m}_{rh} \right) = c_{v} \ T_{r} \ Dm = c_{v} \ \frac{V_{r}}{R} \ Dp$$

Reordenando

$$DQ_r = c_v \frac{V_r}{R} Dp - c_p \left(T_{kr} \dot{m}_{kr} - T_{rh} \dot{m}_{rh} \right)$$

Otra aproximación es la presentada en Ref. [1]:

$$DQ_{r} = \frac{\left[V_{r} + \gamma \left(V_{c} + V_{k} + V_{h} + V_{e}\right)\right] Dp + \gamma p \left(DV_{e} + DV_{c}\right)}{\gamma - 1}$$

2.2.4.4 Zona de calentamiento

Las ecuaciones son similares a las deducidas para el regenerador, sólo que en este caso la temperatura es impuesta. Las ecuaciones para esta zona son:

$$m_{h} = \frac{p V_{h}}{R T_{h}}$$

$$dm_{h} = \frac{m_{h}}{p} dp = \frac{V_{h}}{R T_{h}} dp$$

$$DQ_{h} = c_{v} \frac{V_{h}}{R} Dp - c_{p} \left(T_{rh} \dot{m}_{rh} - T_{he} \dot{m}_{he}\right)$$

2.2.4.5 Zona de enfriamiento

Las condiciones, y por lo tantos las ecuaciones resultantes, son similares a las anteriores:

$$m_{k} = \frac{p V_{k}}{R T_{k}}$$
$$dm_{k} = \frac{m_{k}}{p} dp = \frac{V_{k}}{R T_{k}} dp$$
$$DQ_{k} = c_{v} \frac{V_{k}}{R} Dp - c_{p} \left(T_{ck} \dot{m}_{ck} - T_{kr} \dot{m}_{kr}\right)$$

INFORME TÉCNICO DMA-003/12

2.2.4.6 Ecuación de variación de presión

De la ec.

$$Dm_c + Dm_k + Dm_r + Dm_h + Dm_e = 0$$

Reemplazando los diferenciales de masa:

$$\frac{\gamma \ p \ DV_c + V_c \ Dp}{\gamma \ R \ T_{ck}} + \frac{V_k}{R \ T_k} \ Dp + \frac{V_r}{R \ T_r} \ Dp + \frac{V_h}{R \ T_h} \ Dp + \frac{\gamma \ p \ DV_e + V_e \ Dp}{\gamma \ R \ T_{he}} = 0$$

Despejando el diferencial de presión se obtiene:

$$Dp = \frac{-\gamma p \left(\frac{DV_c}{T_{ck}} + \frac{DV_e}{T_{he}}\right)}{\left[\frac{V_c}{T_{ck}} + \gamma \left(\frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h}\right) + \frac{V_e}{T_{he}}\right]}$$

2.2.4.7 Trabajo

Finalmente el trabajo realizado en las celdas de compresión y expansión está dado por:

$$W = W_c + W_e$$
$$DW_c = p DV_c$$
$$DW_e = p DV_e$$
$$DW = DW_c + DW_e$$

Reemplazando:

$$DW = p DV_c + p DV_e$$

INFORME TÉCNICO DMA-003/12

2.3 Resumen de ecuaciones

2.3.1 Modelo

Figura 5: Motores Stirling – Modelo Adiabático Ideal³

2.3.2 Presión

$$p = \frac{M R}{\frac{V_c}{T_c} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{V_e}{T_e}}$$
$$Dp = \frac{-\gamma p \left(\frac{DV_c}{T_{ck}} + \frac{DV_e}{T_{he}}\right)}{\left[\frac{V_c}{T_{ck}} + \gamma \left(\frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h}\right) + \frac{V_e}{T_{he}}\right]}$$

2.3.3 Masas

$$m_{c} = \frac{p V_{c}}{R T_{c}}$$

$$m_{k} = \frac{p V_{k}}{R T_{k}}$$

$$m_{r} = \frac{p V_{r}}{R T_{r}}$$

$$m_{h} = \frac{p V_{h}}{R T_{h}}$$

$$m_{e} = \frac{p V_{e}}{R T_{e}}$$

Autor: Ing. Gustavo Scarpin

INFORME TÉCNICO DMA-003/12

2.3.4 Acumulación de masa

$$Dm_{c} = \frac{\gamma \ p \ DV_{c} + V_{c} \ Dp}{\gamma \ R \ T_{ck}}$$
$$Dm_{k} = \frac{V_{k}}{R \ T_{k}} \ Dp$$
$$Dm_{r} = \frac{V_{r}}{R \ T_{r}} \ Dp$$
$$Dm_{h} = \frac{V_{h}}{R \ T_{h}} \ Dp$$
$$Dm_{e} = \frac{\gamma \ p \ DV_{e} + V_{e} \ Dp}{\gamma \ R \ T_{he}}$$

2.3.5 Caudal másico

$$Dm_{c} = -\dot{m}_{ck}$$
$$\dot{m}_{kr} = \dot{m}_{ck} - dm_{k}$$
$$\dot{m}_{rh} = \dot{m}_{he} + dm_{h}$$
$$Dm_{e} = \dot{m}_{he}$$

2.3.6 Condicional de temperatura

If
$$(\dot{m}_{ck} > 0)$$
 then $T_{ck} = T_c$ else $T_{ck} = T_k$
If $(\dot{m}_{he} > 0)$ then $T_{he} = T_h$ else $T_{he} = T_e$

2.3.7 Energía

$$DW_{c} = p DV_{c}$$

$$DQ_{k} = c_{v} \frac{V_{k}}{R} Dp - c_{p} (T_{ck} \dot{m}_{ck} - T_{kr} \dot{m}_{kr})$$

$$DQ_{r} = c_{v} \frac{V_{r}}{R} Dp - c_{p} (T_{kr} \dot{m}_{kr} - T_{rh} \dot{m}_{rh})$$

$$DQ_{h} = c_{v} \frac{V_{h}}{R} Dp - c_{p} (T_{rh} \dot{m}_{rh} - T_{he} \dot{m}_{he})$$

$$DW_{e} = p DV_{e}$$

$$DW = DW_{c} + DW_{e}$$

$$W = W_{c} + W_{e}$$

INFORME TÉCNICO DMA-003/12

El sistema está formado por 22 variables y 16 derivadas a ser resueltas en un ciclo completo $(\theta = [0, 2\pi])$:

- 7 derivadas a ser integradas numéricamente: $T_c, T_e, Q_k, Q_r, Q_h, W_c, W_e$
- 9 variables y derivadas analíticas: $W, p, V_c, V_e, m_c, m_k, m_r, m_h, m_e$
- 6 variables condicionales y de flujo másico (derivadas indefinidas): $T_{ck}, T_{he}, \dot{m}_{ck}, \dot{m}_{kr}, \dot{m}_{he}$

2.4 Consideraciones varias

- 1. El modelo representa un sistema de flujo cuasi-estacionario, en el cual, entre los intervalos de integración, se asume que las cuatro variables de flujo másico $(\dot{m}_{ck}, \dot{m}_{kr}, \dot{m}_{rh}, \dot{m}_{he})$ permaneces constante, es decir, no existen efectos por la aceleración.
- 2. Si los intercambiadores de calor son isotérmicos y el regenerador es ideal, se tiene por definición que:

$$T_{kr} = T_k$$
$$T_{rh} = T_h$$

3. El modelo Adiabático Ideal no es un modelo de valor inicial sino que es un problema de condiciones de contorno. Por lo tanto no se conocen los valores iniciales de T_c y T_e , los cuales resultan de los procesos de compresión y expansión adiabáticos, así como de los procesos de flujos entálpicos. Para obtenerlos se asignan valores arbitrarios como condiciones iniciales y se espera que los valores de los mismos sean iguales al principio $(\theta = 0^\circ)$ y final del ciclo $(\theta = 360^\circ)$ (Por ejemplo con un error relativo de 10⁻⁵). Generalmente se suele asignar como condición inicial:

$$T_{c_0} = T_k$$
$$T_{e_0} = T_h$$

Generalmente es necesario entre 5 y 10 ciclos para que el sistema converja.

4. Se suele usar Runge-Kutta de 4to orden para integrar el sistema hasta lograr las condiciones estacionarias (repetitividad entre dos ciclos). Se lo suele verificar calculando la presión promedio del ciclo y verificando que sea igual a la presión promedio propuesta en la entrada (por ej. 20 Bar).

INFORME TÉCNICO DMA-003/12

5. En el caso de movimiento sinusoidal:

$$V_{c} = V_{clc} + \frac{V_{swc}}{2} (1 + \cos(\theta))$$
$$V_{e} = V_{cle} + \frac{V_{swe}}{2} (1 + \cos(\theta + \delta))$$
$$dV_{c} = -\frac{V_{swc}}{2} \sin(\theta) d\theta$$
$$dV_{e} = -\frac{V_{swe}}{2} \sin(\theta + \delta) d\theta$$

Donde δ es el desfasaje de volumen (VLP).

6. Los datos de entrada son:

- i. Gas de trabajo: Define γ y ${\it R}$, ó, $c_{_{p}}$ y $c_{_{\! \nu}}$
- ii. Presión promedio, P_{ave}
- iii. Temperatura del calentador, T_h
- iv. Temperatura del enfriador, T_k
- v. Desfasaje de volumen, δ
- vi. Volumen libre de compresión, V_{clc}
- vii. Volumen de barrido de compresión, V_{swc}
- viii. Volumen del enfriador, V_k
- ix. Volumen del regenerador, V_r
- x. Volumen del calentador, V_h
- xi. Volumen de barrido de expansión, $V_{\rm swe}$
- xii. Volumen libre de expansión, V_{cle}
- xiii. Velocidad de rotación de la manivela, $\dot{\theta}$

INFORME TÉCNICO DMA-003/12

3. <u>RESULTADOS</u>

El procedimiento descripto en §2 fue implementado en un programa de cómputo, el cual se lista en el ANEXO B.

A modo de ejemplo de utilización y con el propósito de validar los resultados se ha modelado el motor Ross D-90⁴ con movimiento sinusoidal.

Gas de trabajo		Air	
Presión promedio	Pave	200000	Pa
Temperatura del calentador	T_h	923	K
Temperatura del enfriador	T_k	300	K
Desfasaje de volumen	δ	95.5694	0
Volumen libre de compresión	V _{clc}	8.0000	cm ³
Volumen de barrido de compresión	V _{swc}	61.0450	cm ³
Volumen del enfriador	V_k	31.2101	cm ³
Volumen del regenerador	V _r	34.8885	cm ³
Volumen del calentador	V_h	28.5093	cm ³
Volumen de barrido de expansión	V _{swe}	61.0450	cm ³
Volumen libre de expansión	V _{cle}	10.0000	cm ³
Velocidad de rotación de la manivela	$\dot{ heta}$	40.0000	1/sec

Tabla 1: Motor Ross D-90⁴

Seguidamente se presentan las performances de dicho motor obtenidas con el modelo adiabático ideal descripto en este informe.

Los resultados coinciden con los presentados en Ref. [3] excepto para las performances del regenerador, ya que en dicha referencia se utiliza un método alternativo de cálculo.

3.1 Diagrama Presión-Volumen

La curva que se muestra en la Figura 6 es típica para casi todos los motores de combustión interna o externa. El área encerrada por el bucle es igual al trabajo neto por ciclo producido por el motor (3.706480 J), mientras que el área entre el eje V_{tot} y la parte superior del bucle se corresponde con el calor que se ha consumido por ciclo. La relación entre los dos es igual a la eficiencia real del motor, aquí 0.625116. Este valor es, por supuesto, menor que la eficiencia de Carnot (0.674973) basado en las temperaturas del enfriador y calentador. La razón termodinámica de esta disminución en la eficiencia, es la mezcla del gas que sale de la zona de compresión y expansión, respectivamente, a temperaturas diferentes de la del gas en la zona de enfriamiento y calentamiento, respectivamente.

INFORME TÉCNICO DMA-003/12

Página 17 de 34

Figura 6: Diagrama Presión-Volumen

3.2 Presión en función del ángulo de manivela

Como era de esperarse la presión fluctúa entre un mínimo (1.433 bar en θ = 340 °) y un máximo (2.733 bar en θ = 160 °). La ubicación precisa es, por supuesto, determinada por la cinemática empleada (en este caso sinusoidal) y los tamaños de las zonas de enfriamiento, regeneración y calentamiento.

Figura 7: Presión en función del ángulo de manivela

INFORME TÉCNICO DMA-003/12

Página 18 de 34

3.3 Volumen total en función del ángulo de manivela

Esto simplemente refleja el tipo de cinemática empleada y el tamaño de las zonas de enfriamiento, regeneración y calentamiento. Como se puede esperar, la relación entre el volumen máximo y mínimo afecta fuertemente la relación de compresión, entre la presión máxima y la mínima.

Figura 8: Volumen en función del ángulo de manivela

3.4 Temperaturas en las zonas de compresión y expansión

INFORME TÉCNICO DMA-003/12

Debido a la falta de transferencia de calor en estas zonas las temperaturas del gas oscilan entre un mínimo y máximo durante un ciclo completo, aunque los gases que entran en estos espacios desde las zonas de enfriamiento y calentamiento, entrar a temperaturas fijas (T_k y T_h , respectivamente). La razón de las oscilaciones en las temperaturas son los cambios de presión.

3.5 Flujos de Calor en las Zona de Enfriamiento, Regeneración y Calentamiento

Las curvas mostradas representan el calor que fluye en estas zonas (positivo cuando el calor fluye desde las paredes hacia el gas, de lo contrario negativo) durante el tiempo que ha transcurrido entre que la manivela rota de la posición $\theta = 0^\circ y \theta$, la referida en el eje horizontal.

Para la zona de enfriamiento esto significa que unos 6.08 [J] de calor se elimina del gas durante los primeros 170 ° (los valores de los ángulos son sólo aproximados) de rotación del cigüeñal (hasta que se alcanza el mínimo en Q_k). Durante el resto de 190 ° para completar un ciclo completo unos 3.86 [J] se añaden de nuevo al gas resultando una pérdida neta de calor de 2.22 [J]. Por lo tanto, en cierta medida el enfriador actúa como un recuperador, adicionando calor al gas durante una parte de ciclo y la eliminando calor en otras. Es importante notar que la cantidad total de calor intercambiado en la zona de enfriamiento (6.08 + 3.86 julios) es en un factor 4.5 veces mayor que el calor neto evacuado de 2.22 [J] lo cual deberá tenerse en cuenta al diseñar el enfriador.

En la zona de calentamiento, el comportamiento es similar pero no tan dramático. Durante los primeros 40° de la rotación del cigüeñal se añade calor (0.86 [J]), durante los próximos 130° se elimina calor (2,60 [J]), mientras que entre θ = 170 ° y 360 ° se añaden unos 7.67 [J] de calor resultando una transferencia de calor neta hacia el gas de 5.93 [J]. Por lo tanto, la cantidad total de calor transferido, 11.3 = 0.86 + 2.60 + 7.67 [J], es sólo alrededor de dos veces mayor que el calor neto incorporado.

INFORME TÉCNICO DMA-003/12

Para el regenerador se ve que se elimina calor del gas durante los primeros 55° (hasta alcanzar el mínimo). Luego se transfiere calor al gas desde los 55° a los 210°, el cual es eliminado entre 210° y 360° con una transferencia de calor neto de cero. El calor añadido durante una parte del ciclo y que luego se retira durante la parte restante es de 32.47 [J] lo cual es aproximadamente 9 (nueve) veces mayor que el trabajo neto producido por el motor de 3.7 [J].

3.6 Caudales Másicos entre Zonas

Las tasas de flujo de masas por unidad son proporcionales a la velocidad de rotación del motor. Como tal, las curvas en la Figura 11 se escalan linealmente con la velocidad de rotación, pero conservan su forma y tamaño con respecto a la otra. El flujo másico desde la zona de compresión hacia el enfriador se asume positivo cuando el gas fluye desde la zona de compresión a la de enfriamiento y negativo cuando el gas fluye en sentido contrario. La misma convención se utiliza para los otros flujos másicos.

Al observar el gráfico, lo más obvio son los dos puntos en el que las 4 curvas se cruzan, es decir, cuando los 4 tipos de flujo de masa son iguales en valor. En θ = 160° el gas fluye por todas partes desde la zona de compresión en la dirección a la zona de expansión con la presión alcanzando su máximo. En θ = 340° el caudal es nuevamente igual en todas partes, pero en dirección opuesta con la presión en su mínimo. Pata el modelo adiabático ideal de los motores Stirling, se puede demostrar que estos dos puntos existen, y que siempre coinciden con la ubicación de la presión mínima y máxima.

En el gráfico, también se puede notar que al regenerador en un momento dado le ingresa gas por ambos extremos (calentador y enfriador) (desde los 40° donde la línea kr corta el eje de abscisa y los 60° donde la línea rh corta dicho eje). En forma similar existe un intervalo (entre 200 y 220°) en donde del regenerador sale gas de ambos extremos. Análisis similares se puede hacer para el enfriador y calentador.

Figura 11: Flujo Másico entre Zonas

INFORME TÉCNICO DMA-003/12

3.7 Performances del motor

Seguidamente se muestra en la Tabla 2 los datos de performance que pueden ser obtenidos del análisis, para los datos de entrada propuestos en Tabla 1.

Características del Motor		
Presión [Bar]	:	mín 1.434 , máx 2.733 , Promedio 2.000
Trabajo/ciclo [J]	:	3.706
Potencia Neta [W]	:	148.25
Eficiencia de Carnot [-]	:	0.675
Eficiencia Real [-]	:	0.625
Masa de gas [g]	:	0.2495
Zona de Compresión		
Temperatura [K]	:	mín. 279.5, máx 337.6
Trabajo [J]	:	-2.223
Calor [J]	:	0.000
Zona del Enfriador		
Trabajo [J]	:	0.000
Calor [J]	:	-2.222
Flujo de Calor [W]	:	mín923.5, máx 555.6
Zona del regenerador		
Temp. Efectiva [K]	:	554.3
Trabajo [J]	:	0.000
Calor Aportado al Gas [J]	:	32.5
Calor Extraído al Gas [J]	:	-32.5
Calor Neto [J]	:	0.000
Flujo de Calor [W]	:	mín3280, máx. 5104

Tabla 2: Performances Motor Stirling

INFORME TÉCNICO DMA-003/12

Zona del Calentador								
Trabajo [J]	:	0.000						
Calor [J]	:	5.925						
Flujo de Calor [W]	:	mín496.5, máx. 760.8						
Zona de Expansión								
Temperatura [K]	:	mín. 779.7, máx. 939.4						
Trabajo [J]	:	5.929						
Calor [J]	:	0.000						

4. <u>CONCLUSIONES</u>

En el marco del proyecto Stirling-Solar se ha desarrollado un programa de cómputos que permite predecir el comportamiento global y de cada una de las partes de un motor con ciclo Stirling.

El programa resuelve las ecuaciones de un modelo adiabático ideal de motor Stirling.

Este tipo de programa es una herramienta importante ya que permite modificar las principales variables de diseño y rápidamente ver cómo ellas afectan al rendimiento del motor.

Debido a las hipótesis realizadas para simplificar el modelo es de esperar que las performances calculadas sean sobreestimadas.

5. <u>REFERENCIAS</u>

- [1] Siegfried Herzog, "Ideal Adiabatic Simulation of Stirling Engines", Feb-2012. http://mac6.ma.psu.edu/stirling/simulations/IdealAdiabatic/index.html
- [2] Yunus A. Cengel, Michael A. Boles, "Thermodynamics: An Engineering Approach", McGraw-Hill; Fifth edition, ISBN-10: 0070606595, 2006.
- [3] Israel Urieli, "Stirling Cycle Machine Analysis Ideal Adiabatic Analysis", Feb-2012. http://www.ohio.edu/mechanical/stirling/adiabatic/adiabatic.html
- [4] Andy Ross, "Making Stirling Engines", Ross Experimental, 3^{er} Edition, Jun-1997.

INFORME TÉCNICO DMA-003/12

ANEXO A: Temperatura Media Efectiva del Regenerador

Con el fin de evaluar correctamente la masa de gas en el volumen del regenerador, se debe conocer la distribución de la temperatura a lo largo del mismo. En este sentido, se supondrá que el regenerador ideal tiene un perfil de temperatura lineal entre la temperatura fría T_k y la temperatura T_h caliente, tal como se muestra en la Figura A-1.

Figura A-1: Perfil Lineal de Temperatura del Regenerador

En la figura anterior se puede observar que el perfil de temperatura a lo largo del regenerador puede ser expresada como:

$$T\left(x\right) = \frac{\left(T_{h} - T_{k}\right)}{L_{r}}x + T_{k}$$

donde L_r es la longitude del regenerador.

La masa total de gas, m_r , dentro del volumen V_r del regenerador, está dada por:

$$m_r = \int_0^{V_r} \rho \, dV_r$$

donde ρ es la densidad.

Asumiendo un regenerador de área constante A_r , se tiene:

$$dV_r = A_r dx$$

y

$$V_r = A_r L_r$$

INFORME TÉCNICO DMA-003/12

Sustituyendo V_r y dV_r , y asumiendo válida la ecuación de estado, $P = \rho R T$, la integral anterior se puede escribir de la siguiente forma:

$$m_r = \frac{V_r P}{R} \int_0^{L_r} \frac{1}{\left(T_h - T_k\right)} x + T_k dx$$

Integrando y simplificando:

$$m_r = \frac{V_r P}{R} \frac{\ln\left(\frac{T_h}{T_k}\right)}{\left(T_h - T_k\right)}$$

Por otro lado, como se ha definido en el texto principal, la temperatura media efectiva del gas en el regenerador, T_r , en términos de la ecuación de estado para un gas ideal es

$$m_r = \frac{V_r P}{R T_R}$$

Comparando las dos ecuaciones anteriores se obtiene finalmente la temperatura media efectiva del regenerador, T_r , como función de T_k y T_h .

$$T_r = \frac{\left(T_h - T_k\right)}{\ln\left(\frac{T_h}{T_k}\right)}$$

INFORME TÉCNICO DMA-003/12

ANEXO B: Manual de Usuario – Programa StirAd

B-1 INTRODUCCION

El programa StirAd es un programa en Fortran que permite calcular las performances de un motor Stirling asumiendo un Modelo Adiabático Ideal. El modelo matemático fue desarrollado en la primera parte de este informe. En este Anexo se presenta el listado fuente del programa junto con un archivo de entrada de ejemplo y su correspondiente archivo de salida.

B-2 ARCHIVO DE ENTRADA

El archivo de entrada StirAd.dat consta de un solo Namelist, DATOS, con la siguiente información:

- i. P, Presión promedio [Pa]
- ii. T_k, Temperatura del enfriador [K]
- iii. T_h, Temperatura del calentador [K]
- iv. V_clc, Volumen libre de compresión [m³]
- v. V_cle , Volumen libre de expansión [m³]
- vi. V_swc , Volumen de barrido de compresión [m³]
- vii. V_swe , Volumen de barrido de expansión [m³]
- viii. V_k, Volumen del enfriador [m³]
- ix. V_r, Volumen del regenerador [m³]
- x. V_h, Volumen del calentador [m³]
- xi. Omega, Velocidad de rotación de la manivela [Hz]
- xii. Delta, Desfasaje de volumen [°]
- xiii. cambio_theta, Paso de ángulo de manivela [°]

xiv. Error_max, Error máximo admisible en la presión media [Pa]

```
&DATOS
```

```
P =
        2.D5
T_k =
        300.D0
T h = 923.D0
V clc = 8.0000D-6
V_cle = 10.000D-6
V_{swc} = 61.0450D-6
V_swe = 61.0450D-6
V_k
      = 31.2101D-6
Vг
      = 34.8885D-6
V h
      = 28.5093D-6
omega = 40.D0
delta = 95.5694D0
cambio theta =
                   5.D0
             =
                   1.D-10
Error_max
/
```


INFORME TÉCNICO DMA-003/12

B-3 ARCHIVO DE SALIDA

En el archivo de salida StirAd.out se imprime el Namelist con los datos de entrada y seguidamente se imprime una tabla conteniendo la siguiente información ordenada por columnas:

- i. Theta [deg], Angulo de manivela (de 0° a 360° con variación de paso cambio_theta)
- ii. p[bar], Presión en el motor
- iii. Tc[K], Temperatura en la zona de compresión
- iv. Te[K], Temperatura en la zona de expansión
- v. Vc[cc], Volumen de la zona de compresión
- vi. Ve[cc], Volumen de la zona de expansión
- vii. Vtot[cc], Volumen total (Vc+Vk+Vr+Vh+Ve)
- viii. Wc[J], Trabajo del pistón de la zona de compresión (Pistón de desplazamiento)
- ix. We[J], Trabajo del pistón de la zona de expansión (Pistón de trabajo)
- x. Wtot[J], Trabajo total (la suma de ambos)
- xi. Qk[J], Calor entrante (+) o saliente (-) de la zona de enfriamiento
- xii. Qr[J], Calor entrante (+) o saliente (-) de la zona de regeneración
- xiii. Qh[J], Calor entrante (+) o saliente (-) de la zona de calentamiento
- xiv. dWc[W], Variación de trabajo en el tiempo en la zona de compresión
- xv. dWe[W], Variación de trabajo en el tiempo en la zona de expansión
- xvi. dWtot[W], Variación de trabajo en el tiempo total (la suma de ambos)
- xvii. dQk[W], Variación de calor en el tiempo en la zona de enfriamiento
- xviii. dQr[W], Variación de calor en el tiempo en la zona de regeneración
- xix. dQh[W], Variación de calor en el tiempo en la zona de calentamiento
- xx. mc[g], Masa en la zona de compresión
- xxi. mk[g], Masa en la zona de enfriamiento
- xxii. mr[g], Masa en la zona de regeneración
- xxiii. mh[g], Masa en la zona de calentamiento
- xxiv. me[g], Masa en la zona de expansión
- xxv. mtot[g], Masa total en el sistema (suma de las anteriores = cte)
- xxvi. ck[g/s], Caudal o flujo másico desde la zona de compresión a la de enfriamiento
- xxvii. kr[g/s], Caudal o flujo másico desde la zona de enfriamiento a la de regeneración
- xxviii. rh[g/s], Caudal o flujo másico desde la zona de regeneración a la de calentamiento
- xxix. he[g/s], Caudal o flujo másico desde la zona de calentamiento a la de expansión

Por cuestiones de espacio la tabla resultado se muestra en forma comprimida y luego de ser levantada a una planilla Excel.

INFORME TÉCNICO DMA-003/12

Página 27 de 34

Theta[gr]	P[Bar]	Tc[K]	Te[K]	Vc[cc]	Veícci	Vtot[cc]	[L]oW	We[J]	Wtot[J]	Qk[J]	Qr[J]	Qh[J]	dWc[W]	dWe[W]	dWtot[W]
0	1.4616	282.55	784.88	69.045	37.56	201.21	0	0	0	0	0	0	0	-1115.9	-1115.9
5	1.4757	283.45	787.23	68.929	34.924	198.46	-3.42E-02	-0.38603	-0.42025	-4.80E-02	-0.82845	0.16818	-98.661	-1112.8	-1211.5
10	1.4927	284.48	789.99	68.581	32.33	195.52	-0.10319	-0.76863	-0.87182	-0.10513	-1.6073	0.31895	-198.84	-1103.1	-1301.9
15	1.5127	285.63	793.18	68.005	29.799	192.41	-0.20736	-1.1454	-1.3528	-0.17146	-2.332	0.45084	-300.34	-1086.4	-1386.8
20	1.5358	286.93	796.79	67.204	27.349	189.16	-0.34708	-1.5139	-1.861	-0.24379	-2.9962	0.56214	-402.94	-1062.7	-1465.7
170	2.7143	336.69	933.13	8.4637	38.165	141.24	-13.12	3.4753	-9.6445	-6.0543	21.175	-1.7521	-361.56	2075.9	1714.4
175	2.6937	335.83	930.24	8.1161	40.826	143.55	-13.182	4.193	-8.9893	-6.0083	22.494	-1.6837	-180.1	2066.3	1886.2
180	2.666	334.73	926.88	8	43.485	146.09	-13.182	4.9001	-8.2822	-5.9186	23.665	-1.5959	0	2035.5	2035.5
185	2.6312	332.68	923.02	8.1161	46.121	148.85	-13.121	5.5895	-7.5317	-5.8013	24.669	-1.4887	175.92	1984.2	2160.1
190	2.5899	329.61	918.66	8.4637	48.715	151.79	-13.001	6.2546	-6.7467	-5.6645	25.492	-1.3638	345	1913.9	2258.9
340	1.434	280.1	779.87	67.204	48.129	209.94	-2.4218	7.4619	5.0401	-2.1201	3.7279	5.1084	376.23	-1065.3	-689.09
345	1.4366	280.53	780.46	68.005	45.524	208.14	-2.3228	7.0846	4.7618	-2.1321	2.742	5.3313	285.22	-1087.1	-801.91
350	1.442	281.08	781.5	68.581	42.88	206.07	-2.2561	6.7018	4.4457	-2.153	1.7898	5.5428	192.09	-1102.9	-910.81
355	1.4504	281.76	782.97	68.929	40.219	203.76	-2.2225	6.3158	4.0933	-2.1828	0.87495	5.7413	96.969	-1112.5	-1015.6
360	1.4616	282.55	784.88	69.045	37.56	201.21	-2.2225	5.9287	3.7062	-2.2217	1.28E-03	5.9255	0	-1115.9	-1115.9

Theta[gr]	dQk[W]	dQr[W]	dQh[W]	mc[g]	mk[g]	mr[g]	mh[g]	me[g]	mtot[g]	ck[g/s]	kr[g/s]	rh[g/s]	he[g/s]
0	-111.93	-2515.4	525.77	0.12438	5.30E-02	3.20E-02	1.57E-02	2.44E-02	0.24945	-2.0532	-3.3525	-4.1385	-4.5243
5	-138.14	-2384.8	478.9	0.12497	5.35E-02	3.23E-02	1.59E-02	2.28E-02	0.24945	-1.3845	-2.9881	-3.9582	-4.4343
10	-164.62	-2241.7	427.85	0.12532	5.41E-02	3.27E-02	1.61E-02	2.13E-02	0.24945	-0.69121	-2.6022	-3.7582	-4.3256
15	-191	-2085	372.71	0.12542	5.48E-02	3.32E-02	1.63E-02	1.98E-02	0.24945	2.93E-02	-2.1928	-3.5371	-4.1969
20	-208.84	-1910.9	312.74	0.12527	5.56E-02	3.37E-02	1.65E-02	1.84E-02	0.24945	0.79669	-1.749	-3.2891	-4.0449
170	0.55792	4171.8	136.56	2.38E-02	9.83E-02	5.95E-02	2.92E-02	3.87E-02	0.24945	4.0393	5.7747	6.8246	7.3399
175	133.16	3795.4	196.72	2.27E-02	9.76E-02	5.90E-02	2.90E-02	4.12E-02	0.24945	2.2824	4.7823	6.2946	7.0369
180	258.47	3372.6	252.92	2.22E-02	9.66E-02	5.84E-02	2.87E-02	4.36E-02	0.24945	0.52742	3.7415	5.686	6.6402
185	337.7	2888	308.48	2.24E-02	9.53E-02	5.77E-02	2.83E-02	4.58E-02	0.24945	-1.314	2.6062	4.9777	6.1416
190	393.44	2369.6	359.4	2.32E-02	9.38E-02	5.68E-02	2.79E-02	4.78E-02	0.24945	-3.1202	1.447	4.21	5.5661
340	-8.6905	-2927.2	670.24	0.11982	5.20E-02	3.14E-02	1.54E-02	3.08E-02	0.24945	-4.5226	-4.6235	-4.6845	-4.7145
345	-34.378	-2839.7	640.61	0.12128	5.20E-02	3.15E-02	1.55E-02	2.92E-02	0.24945	-3.9321	-4.3312	-4.5726	-4.6911
350	-60.104	-2742.3	606.66	0.12253	5.22E-02	3.16E-02	1.55E-02	2.76E-02	0.24945	-3.325	-4.0227	-4.4447	-4.6519
355	-85.934	-2634.4	568.37	0.12357	5.25E-02	3.18E-02	1.56E-02	2.59E-02	0.24945	-2.6993	-3.6969	-4.3003	-4.5965
360	-111.93	-2515.4	525.77	0.12438	5.30E-02	3.20E-02	1.57E-02	2.44E-02	0.24945	-2.0532	-3.3525	-4.1385	-4.5243

B-4 LISTADO FUENTE

Seguidamente se lista el programa fuente y sus subrutinas. Las variables son definidas mediante un include.

INFORME TÉCNICO DMA-003/12

Página 28 de 34

PROGRAMA PRINCIPAL: StirAd

* * * * Modelo Adiabático de un motor Stirling ** Tema : Calculo de las performances de un motor Stirling * * ** Descripcion: Modelo adiabático ** ** Programa Principal : StirAd.for * * ** Autor : Gustavo Scarpin ** Fecha : 27 de Diciembre de 2011 * * * * ** Ultima modificación: 27 de Diciembre de 2011 ** PROGRAM StirAd IMPLICIT NONE INCLUDE 'StirAd.inc' REAL*8 T,W_tot,V_tot,PRESi,PRESf REAL*8 W_c0, W_e0, Q_k0, Q_r0, Q_h0, theta0, cambio_W OPEN(UNIT=3,FILE='StirAd.out',STATUS='UNKNOWN') С ENTRADA DE VALORES CALL lee entrada WRITE(3,1000) PRESi = PDO WHILE (DABS(PRESf-PRESi).GT.Error_max) PRESf = 0.D0 theta0 = -cambio_theta DO theta=0.D0,360.D0*10.D0,cambio_theta T = theta/(360.d0*omega)CALL simula_estado(T) С IMPRIME SALIDA IF (theta.ge.3240.D0) then IF (theta.eq.3240.D0) then $W_c0 = W_c$ $W_e0 = W_e$ $Q_k0 = Q_k$ \tilde{Q} r0 = \tilde{Q} r $\tilde{Q}_h = \tilde{Q}_h$ ENDIF PRESf = PRESf + PV_tot = V_c+V_k+V_r+V_h+V_e W_tot = W_c+W_e cambio_W = cambio_W_c+cambio_W_e theta0=theta0+cambio theta $\texttt{WRITE(3,'(30G15.5)')theta0,P/1.D5,T_c,T_e,V_c/1.D-6,V_e/1.D-6,}$ V_tot/1.D-6,W_c-W_c0,W_e-W_e0, W_tot-(W_c0+W_e0),Q_k-Q_k0,Q_r-Q_r0,Q_h-Q_h0, cambio_W_c,cambio_W_e,cambio_W,cambio_Q_k,cambio_Q_r,cambio_Q_h, m_c*1.D3,m_k*1.D3,m_r*1.D3,m_h*1.D3,m_e*1.D3,masa*1.D3, m_punto_ck*1.D3,m_punto_kr*1.D3,m_punto_rh*1.D3,m_punto_he*1.D3 WRITE(*,'(15G15.5)')theta0,P ENDIF END DO PRESf = (PRESf-P)/(360.D0/cambio_theta) !Cálculo de la Presión Promedio Masa = Masa * PRESi/PRESf WRITE(*,*) PRESi, PRESf, masa END DO 1000 FORMAT(T1, ' Theta[gr] P[Bar] Tc[K] Te[K

INFORME TÉCNICO DMA-003/12

Página 29 de 34

* *

* *

```
Vc[cc] Ve[cc] Vtoticc,

Vc[cc] Ve[cc] Qk[J] Qric,

'wi dWe[W] dWtot[W]

'wi mc[g] mk[

'~1 mtot[g]

'~1')
                                   Vtot[cc]
Qr[J]
dQk[W]
    .]
        We[J] WLOLL
dWc[W]
dOh[
    .h[J]
                                               mk[g]
ck[g/s
          dQr[W]
    .
      mr[g]
    .
    .]
           kr[g/s]
     END PROGRAM StirAd
SUBRUTINAS
* *
            Modelo Adiabático de un motor Stirling
******
** Tema : Lee y escribe en archivos externos
                                                         * *
** Descripcion: Pre y post procesadores e inicio de variables
                                                         * *
                                                      *****
** Subrutina : Entradas_Salidas.for
                                                        * *
** Programa Principal : StirAd.for
                                                         * *

      ** Autor
      : Gustavo Scarpin

      ** Fecha
      : 27 de Diciembre de 2011

                                                         * *
                                                         * *
** Ultima modificación: 27 de Diciembre de 2011
                                                         * *
                                                        * * * *
** ENTRADA DE DATOS
****
    SUBROUTINE lee_entrada
      IMPLICIT NONE
      INCLUDE 'StirAd.inc'
     NAMELIST/DATOS/T_k,T_h,V_clc,V_cle,V_swc,V_swe,V_k,V_r,V_h,P,
                omega,delta,cambio_theta,Error_max
     OPEN(UNIT=1,FILE='StirAd.dat', STATUS='OLD')
     READ(1,DATOS)
     WRITE(3,DATOS)
   TEMPERATURA MEDIA EN EL REGENERADOR
С
     T_r = (T_h-T_k)/LOG(T_h/T_k)
С
   TEMPARATURA INICIAL EN C Y e
     T_c = T_k
      T_e = T_h
      T_ck = T_c
      T_he = T_h
   INICIA VALORES DEL GAS
С
    CALL GAS
   INICIA VALORES GEOMETRICOS
С
     DT = cambio_theta/(360.D0*omega)
      theta = 0.D0
    CALL GEOMETRIA
С
   CALCULO DE LA MASA
    Masa = P/R*(V_c/T_c+V_k/T_k+V_r/T_r+V_h/T_h+V_e/T_e)
     CLOSE(1)
     RETURN
      END SUBROUTINE lee_entrada
** GEOMETRIA DE LAS ZONAS c Y e
```


INFORME TÉCNICO DMA-003/12

Página 30 de 34

* *

* *

```
SUBROUTINE geometria
     IMPLICIT NONE
      INCLUDE 'StirAd.inc'
     V_c = V_clc+V_swc/2.D0*(1+DCOSD(theta))
     V_e = V_cle+V_swe/2.D0*(1+DCOSD(theta+delta))
      cambio_V_c = -V_swc/2.D0*DSIND(theta)*omega*(2.D0*PI)
     cambio_V_e = -V_swe/2.D0*DSIND(theta+delta)*omega*(2.D0*PI)
     RETURN
     END SUBROUTINE geometria
** DEFINE TIPO DE GAS
                  ,
. . . . . . . . . . .
                        ******
    SUBROUTINE gas
     IMPLICIT NONE
INCLUDE 'StirAd.inc'
     Tipo_Gas = 'Aire'
     R = 287.15 D0
     gamma = 1.4D0
     c_v = R/(gamma - 1.D0)
     c_p = gamma * c_v
     RETURN
     END SUBROUTINE gas
**
            Modelo Adiabático de un motor Stirling
                                                        * *
** Tema : Ecuaciones de estado del Stirling
                                                       **
* *
  Descripcion: Modelo adiabático
                                                        * *
** Subrutina : Ecuaciones_Estado.for
                                                     *****
                                                        * *
** Programa Principal : StirAd.for
                                                        * *
** Autor : Gustavo Scarpin
** Fecha : 27 de Diciembre de 2011
** Ultima modificación: 27 de Diciembre de 2011
                                                        * *
                                                        * *
                                                        * *
****
                                   SUBROUTINE simula_estado(T)
     IMPLICIT NONE
     INCLUDE 'StirAd.inc'
     REAL*8 T, Xe(7), XDe(7)
** ENTRADA ECUACIONES DE ESTADO
Xe(1) = T_c
Xe(2) = T_e
     Xe(2) = 1_e

Xe(3) = Q_k

Xe(4) = Q_r

Xe(5) = Q_h

Xe(6) = W_c
     Xe(7) = W_e
     CALL RK4(T,DT,Xe,XDe)
      ΤС
              = Xe(1)
            = Xe(1)
= Xe(2)
= Xe(3)
= Xe(4)
= Xe(5)
= Xe(6)
= Xe(7)
     T_e
      Q_k
      Q_r
      Q_h
     W_C
      W_e
```


INFORME TÉCNICO DMA-003/12

Página 31 de 34

```
cambio_T_c = XDe(1)
     cambio_T_e = XDe(2)
      cambio_Q_k = XDe(3)
      cambio_Q_r = XDe(4)
      cambio_Qh = XDe(5)
      cambio_W_c = XDe(6)
      cambio_W_e = XDe(7)
     RETURN
      END
             SUBROUTINE simula_estado
ENTRADA OBTENCION DERIVADAS DE LAS ECUACIONES DE ESTADO
                                                      SUBROUTINE derivadas_estado(T,Xe,XDe)
      IMPLICIT NONE
      INCLUDE 'StirAd.inc'
      REAL*8 T,Xe(7),XDe(7)
С
    ASIGNAR LAS VARIABLES DE ESTADO
     T_c = Xe(1); T_e = Xe(2);

Q_k = Xe(3); Q_r = Xe(4); Q_h = Xe(5)
      W_c = Xe(6); W_e = Xe(7)
      T = T
      CALL actualiza_variables
    ECUACIONES DE CAMBIO DE TEMPERATURA
С
     С
    ECUACIONES DE INTERCAMBIO DE CALOR
     XDe(3) = c_v*V_k/R*cambio_P-c_p*(T_ck*m_punto_ck-T_kr*m_punto_kr)
     XDe(4) = c_v*V_r/R*cambio_P-c_p*(T_kr*m_punto_kr-T_rh*m_punto_rh)
     XDe(5) = c_v*V_h/R*cambio_P-c_p*(T_rh*m_punto_rh-T_he*m_punto_he)
С
    ECUACIONES DE CAMBIO DE TRABAJO
     XDe(6) = P*cambio_V_c
     XDe(7) = P*cambio_V_e
      RETURN
      END SUBROUTINE derivadas_estado
*****
* *
                    ACTUALIZA VARIABLES
SUBROUTINE actualiza_variables
      IMPLICIT NONE
      INCLUDE 'StirAd.inc'
С
    VARIABLES GEOMETRICAS
     CALL GEOMETRIA
С
    VARIABLES AUXILIARES
     P = Masa*R/(V_c/T_c+V_k/T_k+V_r/T_r+V_h/T_h+V_e/T_e)
С
     Estimación previa
     cambio_P = -gamma*P*(cambio_V_c/T_ck+cambio_V_e/T_he)/
              (V_c/T_ck+gamma*(V_k/T_k+V_r/T_r+V_h/T_h)+V_e/T_he)
      cambio_m_c = (gamma*P*cambio_V_c+V_c*cambio_P)/(gamma*R*T_ck)
cambio_m_e = (gamma*P*cambio_V_e+V_e*cambio_P)/(gamma*R*T_ck)
      m_punto_ck = -cambio_m_c
m_punto_he = cambio_m_e
С
     Asignación de temperaturas
      IF (m_punto_ck.GT.0.D0) THEN
        T_ck = T_c
      ELSE
        T_ck = T_k
      ENDIF
```


INFORME TÉCNICO DMA-003/12

Página 32 de 34

```
IF (m_punto_he.GT.0.D0) THEN
          T_he = T_h
        ELSE
          T_he = T_e
        ENDIF
        T_kr = T_k
        T_rh = T_h
С
     VARIABLES PRINCIPALES
С
      Cambio de la presión
      cambio_P = -gamma*P*(cambio_V_c/T_ck+cambio_V_e/T_he)/
                  (V_c/T_ck+gamma*(V_k/T_k+V_r/T_r+V_h/T_h)+V_e/T_he)
С
      Acumulación de masa
        cambio_m_c = (gamma*P*cambio_V_c+V_c*cambio_P)/(gamma*R*T_ck)
        cambio_m_k = V_k/(R*T_k)*cambio_P
        cambio_m_r = V_r/(R*T_r)*cambio_P
cambio_m_h = V_h/(R*T_h)*cambio_P
        cambio_m_e = (gamma*P*cambio_V_e+V_e*cambio_P)/(gamma*R*T_he)
С
      Masas
      m_c = P*V_c/(R*T_c)
      m_k = P*V_k/(R*T_k)
      m_r = P*V_r/(R*T_r)
      m_h = P*V_h/(R*T_h)
      m_e = P*V_e/(R*T_e)
С
      Caudal másico
        m_punto_ck = -cambio_m_c
       m_punto_he = cambio_m_e
m_punto_kr = m_punto_ck - cambio_m_k
        m_punto_rh = m_punto_he + cambio_m_h
        RETURN
        END SUBROUTINE actualiza variables
        SUBROUTINE RK4(TT, DT, XX, XD)
        IMPLICIT NONE
        INTEGER M,NX
        PARAMETER (NX=7)
        REAL*8 XX(NX),XD(NX),X(NX),XA(NX),T,TT,DT,Q
      CALL derivadas_estado(TT,XX,XD)
        DO M=1,NX
          XA(M) = XD(M)*DT
          X(M) = XX(M) + 0.5D0 * XA(M)
        ENDDO
        T = TT+0.5D0*DT
      CALL derivadas_estado(T,X,XD)
        DO M=1,NX
          Q = XD(M)*DT
X(M) = XX(M)+0.5D0*Q
          XA(M) = XA(M) + Q + Q
        ENDDO
      CALL derivadas_estado(T,X,XD)
        DO M=1,NX
         Q = XD(M) * DTX(M) = XX(M) + Q
          XA(M) = XA(M) + Q + Q
        ENDDO
        TT = TT+DT
      CALL derivadas_estado(TT,X,XD)
        DO M=1.NX
         XX(M) = XX(M) + (XA(M) + XD(M)*DT)/6.D0
        ENDDO
```


INFORME TÉCNICO DMA-003/12

Página 33 de 34

```
RETURN
```

END SUBROUTINE RK4

INCLUDE

```
* *
                                                              * *
              Modelo Adiabático de un motor Stirling
** Tema : Definicion de variables
                                                   *****
                                                               * *
* *
   Descripcion: Definicion de variables globales
                                                               * *
** Incluir
                    : StirAd.inc
                                                               * *
** Programa Principal : StirAd.for
                                                               * *
** Autor : Gustavo Scarpin
** Fecha : 27 de Diciembre de 2011
                                                               * *
                                                               * *
** Ultima modificación: 27 de Diciembre de 2011
                                                               * *
ىد بد بد بد
C DEFINICION DE CONSTANTES GLOBALES
        REAL*8, PARAMETER :: PI = 3.14159265359D0
        REAL*8, PARAMETER :: g = 9.80665D0
        REAL*8, PARAMETER :: grad_rad = 0.01745329252D0
REAL*8, PARAMETER :: rad_grad = 57.2957795131D0
C VARIABLES DE ESTADO
     REAL*8 T_C
     REAL*8 T_e
     REAL*8 Q_k
     REAL*8 Q_r
     REAL*8 Q_h
     REAL*8 W_c
     REAL*8 W_e
     REAL*8 cambio_T_c
     REAL*8 cambio_T_e
     REAL*8 cambio_Q_k
     REAL*8 cambio_Q_r
     REAL*8 cambio_Q_h
     REAL*8 cambio_W_c
     REAL*8 cambio_W_e
     COMMON/estado/T_c,T_e,Q_k,Q_r,Q_h,W_c,W_e,cambio_T_c,
    .cambio_T_e,cambio_Q_k,cambio_Q_r,cambio_Q_h,cambio_W_c,cambio_W_e
C VARIABLES SUBRUTINA geometria
     REAL*8 V_c
        REAL*8 V_e
        REAL*8 V_clc
REAL*8 V_cle
        REAL*8 V_swc
        REAL*8 V swe
        REAL*8 cambio_V_c
        REAL*8 cambio_V_e
        REAL*8 theta
        REAL*8 cambio_theta
        REAL*8 delta
     COMMON/geo/V_c,V_e,V_clc,V_cle,V_swc,V_swe,cambio_V_c,cambio_V_e,
               theta,cambio_theta,delta
C VARIABLES SUBRUTINA gas
     CHARACTER*10 Tipo_Gas
        REAL*8 R
        REAL*8 gamma
        REAL*8 c_p
        REAL*8 c_v
     COMMON/var_gas/Tipo_Gas, R, gamma, c_p, c_v
C VARIABLES SUBRUTINA lee_entrada
     REAL*8 T_k
        REAL*8 T_h
```


INFORME TÉCNICO DMA-003/12

Página 34 de 34

REAL*8 T_r REAL*8 V_k REAL*8 V_r REAL*8 V_h REAL*8 P REAL*8 omega REAL*8 DT REAL*8 Masa REAL*8 Error_max COMMON/entrada/T_k,T_h,T_r,V_k,V_r,V_h,P,omega,DT,Masa,Error_max C VARIABLES SUBRUTINA actualiza_variables REAL*8 cambio_P REAL*8 m_c REAL*8 m_k REAL*8 m_r REAL*8 m_h REAL*8 m_e REAL*8 cambio_m_c REAL*8 cambio_m_k REAL*8 cambio_m_r REAL*8 cambio_m_h REAL*8 cambio_m_e REAL*8 m_punto_ck REAL*8 m_punto_he REAL*8 m_punto_kr REAL*8 m_punto_rh REAL*8 T_ck REAL*8 T_he REAL*8 T_kr REAL*8 T_rh COMMON/variables/cambio_P,m_c,m_k,m_r,m_h,m_e,cambio_m_c,

.cambio_m_k,cambio_m_r,cambio_m_h,cambio_m_e,m_punto_ck,m_punto_he, .m_punto_kr,m_punto_rh,T_ck,T_he,T_kr,T_rh